Skip to main content

Advertisement

Log in

siRNA-Mediated Down-Regulation of P-glycoprotein in a Xenograft Tumor Model in NOD-SCID Mice

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The efficacy of chemotherapy is decreased due to over-expression of the drug transporter P-glycoprotein (P-gp). This study was conducted to determine the feasibility of down-regulating tumor P-gp levels with non-viral siRNA delivery in order to sensitize the tumors to drug therapy.

Methods

P-gp over-expressing MDA435/LCC6 MDR1 cells were used to establish xenografts in NOD-SCID mouse. Cationic polymers polyethylenimine (PEI) and stearic acid-substituted poly-L-lysine (PLL-StA) were formulated with P-gp- specific siRNAs and delivered intratumorally to explore the feasibility of P-gp down-regulation in tumors. Intravenous Doxil™ was administered to investigate tumor growth.

Results

PEI and PLL-StA effectively delivered siRNA to MDA435/LCC6 MDR1 cells in vitro to reduce P-gp expression for 3 days. Intratumoral injection of siRNA with the carriers resulted in 60-80% and 20–32% of siRNA retention in tumors after 24 and 96 hr, respectively. This led to ~29.0% and ~61.5% P-gp down-regulation with PEI- and PLL-StA-mediated siRNA delivery, respectively. The P-gp down-regulation by intratumoral siRNA injection led to better response to systemic Doxil™ treatment, resulting in slowed tumor growth in originally doxorubicin-resistant tumors.

Conclusion

Effective P-gp down-regulation was feasible with polymeric siRNA delivery in a xenograft model, resulting in an enhanced response to the drug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DOX:

doxorubicin

HBSS:

Hank’s Balanced Salt Solution

MDR:

multi-drug resistance

MDR1:

multi-drug resistance gene 1 expressing cells

NOD-SCID:

non-obese/severe combined immunodeficient

PEI:

polyethylenimine

P-gp:

P-glycoprotein

PLL-StA:

stearic acid substituted poly-L-lysine

siRNA:

short interfering RNA

WT:

wild-type cells

REFERENCES

  1. Kerbel RS. Molecular and physiologic mechanisms of drug resistance in cancer: an overview. Canc Metastasis Rev. 2001;20:1–2.

    Article  CAS  Google Scholar 

  2. Linardi RL, Natalini CC. Multi-drug resistance (MDR1) gene and P-glycoprotein influence on pharmacokinetic and pharmacodynamic of therapeutic drugs. Ciência Rural. 2006;36:336–41.

    Article  CAS  Google Scholar 

  3. Eckford PDW, Sharom FJ. ABC efflux pump-based resistance to chemotherapy drugs. Chem Rev. 2009;109:2989–3011.

    Article  PubMed  CAS  Google Scholar 

  4. Higgins CF, Gottesman MM. Is the multidrug transporter a flippase? Trends Biochem Sci. 1992;17:18–21.

    Article  PubMed  CAS  Google Scholar 

  5. Loo TW, Clarke DM. Recent progress in understanding the mechanism of P-glycoprotein mediated drug efflux. J Membr Biol. 2005;206:173–85.

    Article  PubMed  CAS  Google Scholar 

  6. Schinkel AH, Borst P. Binding properties of monoclonal antibodies recognizing external epitopes of the human MDR1 P-glycoprotein. Int J Cancer. 1993;55:478–84.

    Article  PubMed  CAS  Google Scholar 

  7. Chen Y, Simon SM. In situ biochemical demonstration that P-glycoprotein acts a drug efflux pump with broad specificity. J Cell Biol. 2000;148:5863–70.

    Google Scholar 

  8. Beaulieu E, Demeule M, Ghitescu L, Beliveau R. P-glycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain. Biochem J. 1997;326:539–44.

    PubMed  CAS  Google Scholar 

  9. Van Zuylen L, Nooter K, Sparreboom A, Verweij J. Development of multidrug-resistance converters: sense or nonsense? Investig New Drugs. 2000;18:205–20.

    Article  Google Scholar 

  10. Thomas H, Coley HM. Overcoming multidrug resistance in cancer: P-gp modulators. Cancer Cont. 2003;10:159–65.

    Google Scholar 

  11. Kim SH, Jeong JH, Lee SH, Kim SW, Park TG. Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J Contr Release. 2008;129:107–16.

    Article  CAS  Google Scholar 

  12. Stierlé V, Laigle A, Jollés B. Modulation of MDR1 gene expression in multidrug resistant MCF7 cells by low concentrations of small interfering RNAs. Biochem Pharmacol. 2005;70:1424–30.

    PubMed  Google Scholar 

  13. Nieth C, Priebsch A, Stege A, Lage H. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett. 2003;545:144–50.

    Article  PubMed  CAS  Google Scholar 

  14. Akhtar S, Benter IF. Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest. 2007;117:3623–32.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang T, Guan M, Jin HY, Lu Y. Reversal of multidrug resistance by small interfering double-stranded RNAs in ovarian cancer cells. Gynecol Oncol. 2005;97:501–7.

    Article  PubMed  CAS  Google Scholar 

  16. Xing H, Wang S, Weng D, Chen G, Yang X, Zhou J, et al. Knock-down of P-glycoprotein reverses taxol resistance in ovarian cancer multicellular spheroids. Oncol Rep. 2007;17:117–22.

    PubMed  CAS  Google Scholar 

  17. Xu D, McCarty D, Fernandes A, Fisher M, Samulski RJ, Juliano RL. Delivery of MDR1 small interfering RNA by self-complementary recombinant adeno-associated virus vector. Mol Ther. 2005;11:523–30.

    Article  PubMed  Google Scholar 

  18. Huaa J, Mutcha DJ, Herzog TJ. Stable suppression of MDR-1 gene using siRNA expression vector to reverse drug resistance in a human uterine sarcoma cell line. Gynecol Oncol. 2005;98:31–8.

    Article  Google Scholar 

  19. Yague E, Higgins CF, Raguz S. Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1. Gene Ther. 2004;11:1170–4.

    Article  PubMed  CAS  Google Scholar 

  20. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol. 2003;21:635–7.

    Article  PubMed  CAS  Google Scholar 

  21. Wang Y, Hu JK, Krol A, Li YP, Li CY, Yuan F. Systemic dissemination of viral vectors during intratumoral injection. Mol Cancer Ther. 2003;2:1233–42.

    PubMed  CAS  Google Scholar 

  22. Buyens K, Lucas B, Raemdonck K, Braeckmans K, Vercammen J, Hendrix J, et al. A fast and sensitive method for measuring the integrity of siRNA-carrier complexes in full human serum. J Contr Release. 2008;18:67–76.

    Article  Google Scholar 

  23. Song YK, Liu F, Chu S, Liu D. Characterization of cationic liposome-mediated gene transfer in vivo by intravenous administration. Hum Gene Ther. 1997;8:1585–94.

    Article  PubMed  CAS  Google Scholar 

  24. Ruiz FE, Clancy JP, Perricone MA, Perricone MA, Bebok Z, Hong JS, et al. A clinical inflammatory syndrome attributable to aerosolized lipid-DNA administration in cystic fibrosis. Hum Gene Ther. 2001;12:751–61.

    Article  PubMed  CAS  Google Scholar 

  25. Scheule RK, George JA, Bagley RG, Marshall J, Kaplan JM, Akita GY, et al. Basis of pulmonary toxicity associated with cationic lipid-mediated gene transfer to the mammalian lung. Hum Gene Ther. 1997;8:689–707.

    Article  PubMed  CAS  Google Scholar 

  26. Abbasi M, Lavasanifar A, Berthiaume LC, Weinfeld M, Uludağ H. Cationic polymer mediated siRNA delivery for P-glycoprotein (P-gp) down-regulation in tumor cells. Cancer. 2010;116:5544–54.

    Article  PubMed  CAS  Google Scholar 

  27. Liu C, Zhao G, Liu J, Ma N, Chivukula P, Perelman L, et al. Novel biodegradable lipid nano complex for siRNA delivery significantly improving the chemosensitivity of human colon cancer stem cells to paclitaxel. J Contr Release. 2009;140:277–83.

    Article  CAS  Google Scholar 

  28. Alshamsan A, Haddadi A, Incani V, Samuel J, Lavasanifar A, Uludağ H. Formulation and delivery of siRNA by oleic acid and stearic acid modified polyethyleneimine. Mol Pharma. 2009;6:121–33.

    Article  CAS  Google Scholar 

  29. Abbasi M, Uludağ H, Incani V, Hsu CYM, Jeffery A. Further investigation of lipid-substituted Poly(L-Lysine) polymers for transfection of human skin fibroblasts. Biomacromolecules. 2008;9:1618–30.

    Article  PubMed  CAS  Google Scholar 

  30. Rae JM, Creighton CJ, Meck JM, Haddad BR, Johnson MD. MDA-MB-435 cells are derived from M14 melanoma cells-a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat. 2007;104:13–9.

    Article  PubMed  Google Scholar 

  31. Shen H, Pan Y. Reversal of multidrug resistance of gastric cancer cells by downregulation of TSG101 with TSG101siRNA. Cancer Biol Ther. 2004;3:561–5.

    PubMed  CAS  Google Scholar 

  32. Theyer G, Schirmböck M, Thalhammer T, Sherwood ER, Baumgartner G, Hamilton G. Role of the MDR-1-encoded multiple drug resistance phenotype in prostate cancer cell lines. J Urol. 1993;150:1544–7.

    PubMed  CAS  Google Scholar 

  33. Persengiev SP, Zhu X, Green MR. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA. 2004;10:12–8.

    Article  PubMed  CAS  Google Scholar 

  34. Semizarov D, Frost L, Sarthy A, Kroeger P, Halbert DN, Fesik SW. Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci USA. 2003;100:6347–52.

    Article  PubMed  CAS  Google Scholar 

  35. Boese Q, Leake D, Reynolds A, Read S, Scaringe SA, Marshall WS, et al. Mechanistic insights aid computational short interfering RNA design. Meth Enzymol. 2005;392:73–96.

    Article  PubMed  CAS  Google Scholar 

  36. Ji J, Wernli M, Klimkait T, Erb P. Enhanced gene silencing by the application of multiple specific small interfering RNAs. FEBS Lett. 2003;552:247–52.

    Article  PubMed  CAS  Google Scholar 

  37. Holen T, Amarzguioui M, Wiiger MT, Babaie E, Prydz H. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res. 2002;30:1757–66.

    Article  PubMed  CAS  Google Scholar 

  38. Shi Z, Liang Y, Chen Z, Wang X, Wang X, Ding Y, et al. Reversal of MDR1/P-glycoprotein-mediated multidrug resistance by vector-based RNA interference in vitro and in vivo. Canc Biol Ther. 2006;5:39–47.

    Article  CAS  Google Scholar 

  39. Jiang Z, Zhao P, Zhou Z, Liu J, Qin L, Wang H. Using attenuated Salmonella Typhi as tumor targeting vector for MDR1 siRNA delivery. Canc Biol Ther. 2007;6:555–60.

    Article  CAS  Google Scholar 

  40. Xiao H, Wu Z, Shen H, Luo A-L, Yang Y-F, Li X-B, et al. In vivo reversal of P-glycoprotein-mediated multidrug resistance by efficient delivery of Stealth™ RNAi. Basic Clin Pharmacol Toxicol. 2008;103:342–8.

    Article  PubMed  CAS  Google Scholar 

  41. Patil YB, Swaminathan SK, Sadhukha T, Ma L, Panyam J. The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials. 2010;31:358–65.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

Financial support for this project was provided by the Natural Sciences and Engineering Council of Canada (NSERC) and Canadian Institutes of Health Research (CIHR). Equipment support was provided by the Alberta Heritage Foundation for Medical Research (AHFMR) and Alberta Advanced Education & Technology. We thank Ms. Vanessa Incani for preparing the lipid-substituted PLL-StA, and Dr. Richard Clarke (Georgetown University, DC, USA) for the cell line used for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Uludağ.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemetary Material

(DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbasi, M., Aliabadi, H.M., Moase, E.H. et al. siRNA-Mediated Down-Regulation of P-glycoprotein in a Xenograft Tumor Model in NOD-SCID Mice. Pharm Res 28, 2516–2529 (2011). https://doi.org/10.1007/s11095-011-0480-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0480-z

KEY WORDS

Navigation