Skip to main content
Log in

Surface Characterisation of Bioadhesive PLGA/Chitosan Microparticles Produced by Supercritical Fluid Technology

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Novel biodegradable and mucoadhesive PLGA/chitosan microparticles with the potential for use as a controlled release gastroretentive system were manufactured using supercritical CO2 (scCO2) by the Particle Gas Saturated System (PGSS) technique (also called CriticalMixTM).

Methods

Microparticles were produced from PLGA with the addition of mPEG and chitosan in the absence of organic solvents, surfactants and crosslinkers using the PGSS technique. Microparticle formulations were morphologically characterized by scanning electron microscope; particle size distribution was measured using laser diffraction. Microparticle surface was analyzed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) to evaluate the presence of chitosan on the surface. Mucoadhesiveness of the microparticles was evaluated in vitro using a mucin assay employing two different kinds of mucin (Mucin type III and I-S) with different degrees of sialic acid contents, 0.5–1.5% and 9–17%, respectively.

Results

The two analytical surface techniques (XPS and ToF-SIMS) demonstrated the presence of the chitosan on the surface of the particles (<100 μm), dependent on the polymer composition of the microparticles. The interaction between the mucin solutions and the PLGA/chitosan microparticles increased significantly with an increasing concentration of mucin and chitosan.

Conclusions

The strong interaction of mucin with the chitosan present on the surface of the particles suggests a potential use of the mucoadhesive carriers for gastroretentive and oral controlled drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ASES:

aerosol solvent extraction system

BSA:

bovine serum albumin

CAN-BD:

supercritical carbon dioxide assisted nebulisation with a bubble dryer

FAT:

fixed analyzer transmission

GAS:

gas anti-solvent

mPEG:

methoxy polyethylene glycol

PAS:

periodic acid-Schiff

PCA:

precipitation with a compressed fluid anti-solvent

PEO:

polyethylene oxide

PGSS:

particle gas saturated system

PLA:

polylactic acid

PLGA:

poly(lactic-co-glycolic acid)

PSD:

particle size distribution

RESS:

rapid expansion from a supercritical solution

RESOLV:

rapid expansion of a supercritical solution into a liquid solvent

SAA:

supercritical assisted atomization

SAS:

supercritical anti-solvent

scCO2 :

supercritical carbon dioxide

SCF:

supercritical fluid

SEDS:

solution enhanced dispersion of solids

TMC:

N-trimethyl chitosan

ToF-SIMS:

time-of-flight secondary ion mass spectrometry

VMD:

volume-averaged mean diameter

XPS:

X-ray photoelectron spectroscopy

REFERENCES

  1. Maurya SK, Pathak K, Bali V. Therapeutic potential of mucoadhesive drug delivery systems—an updated patent review. Recent Pat Drug Deliv Formul 2010; Jul 22.

  2. Peppasand NA, Buri PA. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Control Rel. 1985;2:257–75.

    Article  Google Scholar 

  3. Avgoustakis K. Pegylated poly(Lactide) and poly(Lactide-Co-Glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr Drug Deliv. 2004;1:321–33.

    Article  PubMed  CAS  Google Scholar 

  4. Gattani SG, Savaliya PJ, Belgamwar VS. Floating-mucoadhesive beads of clarithromycin for the treatment of helicobacter pylori infection. Chem Pharm Bull. 2010;58:782–7.

    Article  PubMed  CAS  Google Scholar 

  5. Thakral N, Ray A, Majumdar D. Eudragit S-100 entrapped chitosan microspheres of valdecoxib for colon cancer. J Mat Sci: Materials in Medicine 2010.

  6. Mishra N, Goyal AK, Tiwari S, Paliwal R, Paliwal SR, Vaidya B, et al. Recent advances in mucosal delivery of vaccines: role of mucoadhesive/biodegradable polymeric carriers. Expert Opin Ther Pat. 2010;20:661–79.

    Article  PubMed  CAS  Google Scholar 

  7. Jaganathanand KS, Vyas SP. Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant Hepatitis B antigen administered intranasally. Vaccine. 2006;24:4201–11.

    Article  Google Scholar 

  8. Pawar D, Goyal A, Mangal S, Mishra N, Vaidya B, Tiwari S, et al. Evaluation of mucoadhesive PLGA microparticles for nasal immunization. The AAPS Journal. 2010;12:130–7.

    Article  PubMed  CAS  Google Scholar 

  9. Slütter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, et al. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine. 2010;28:6282–91.

    Article  PubMed  Google Scholar 

  10. Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364:298–327.

    Article  PubMed  CAS  Google Scholar 

  11. Xie S, Zhu Q, Wang B, Gu H, Liu W, Cui L, et al. Incorporation of tripolyphosphate nanoparticles into fibrous poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials. 2010;31:5100–9.

    Article  PubMed  CAS  Google Scholar 

  12. Senyigit ZA, Vetter A, Guneri T, Bernkop-Schnurch A. Gastroretentive particles formulated with thiomers: development and in vitro evaluation. J Drug Target. 2010;18:362–72.

    Article  PubMed  CAS  Google Scholar 

  13. Shim IK, Lee SY, Park YJ, Lee MC, Lee SH, Lee JY, et al. Homogeneous chitosan-PLGA composite fibrous scaffolds for tissue regeneration. J Biomed Mat Res Part A. 2008;84A:247–55.

    Article  CAS  Google Scholar 

  14. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4:518–24.

    Article  PubMed  CAS  Google Scholar 

  15. Houchin ML, Topp EM. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J Pharm Sci. 2008;97:2395–404.

    Article  PubMed  CAS  Google Scholar 

  16. Lewis AL, Illum L. Formulation strategies for sustained release of proteins. Ther Del. In press: 2010.

  17. Frank A. Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polym Int. 2005;54:36–46.

    Article  Google Scholar 

  18. Bala I, Hariharan S, Ravi Kumar MNV. PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Car Syst. 2004;21:387–422.

    Article  CAS  Google Scholar 

  19. Giunchedi P, Conti B, Scalia S, Conte U. in vitro degradation study of polyester microspheres by a new HPLC method for monomer release determination. J Control Rel. 1998;56:53–62.

    Article  CAS  Google Scholar 

  20. Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21:2475–90.

    Article  PubMed  CAS  Google Scholar 

  21. Jalil R, Nixon JR. Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules: problems associated with preparative techniques and release properties. J Microencap. 1990;7:297–325.

    Article  CAS  Google Scholar 

  22. Cohen S, Alonso MJ, Langer R. Novel approaches to controlled-release antigen delivery. Int J Tech Assess Health Care. 1994;10:121–30.

    Article  CAS  Google Scholar 

  23. He P, Davis SS, Illum L. Chitosan microspheres prepared by spray drying. Int J Pharm. 1999;187:53–65.

    Article  PubMed  CAS  Google Scholar 

  24. Woitiski CB, Neufeld RJ, Ribeiro AJ, Veiga F. Colloidal carrier integrating biomaterials for oral insulin delivery: influence of component formulation on physicochemical and biological parameters. Acta Biomaterialia. 2009;5:2475–84.

    Article  PubMed  CAS  Google Scholar 

  25. Murphy CS, Pillay V, Choonara YE, du Toit LC. Gastroretentive drug delivery systems: current developments in novel system design and evaluation. Curr Drug Deliv. 2009;6:451–60.

    Article  PubMed  CAS  Google Scholar 

  26. Ratzinger G, Wang X, Wirth M, Gabor F. Targeted PLGA microparticles as a novel concept for treatment of lactose intolerance. J Control Rel. 2010;147:187–92.

    Article  CAS  Google Scholar 

  27. Dyer AM, Hinchcliffe M, Watts P, Castile J, Jabbal-Gill I, Nankervis R, et al. Nasal delivery of insulin using novel chitosan based formulations: a comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm Res. 2002;19:998–1008.

    Article  PubMed  CAS  Google Scholar 

  28. Leane MM, Hinchcliffe M, Smith A, Davis SS, Illum L. Investigation of the duodenal absorption of insulin-chitosan formulations in rats. Int Symp Control Rel Bioact Mater. 2003;30:683.

    Google Scholar 

  29. Deacon MP, McGurk S, Roberts CJ, Williams PM, Tendler SJ, Davies MC, et al. Atomic force microscopy of gastric mucin and chitosan mucoadhesive systems. Biochem J. 2000;348:557–63.

    Article  PubMed  CAS  Google Scholar 

  30. Sigurdsson HH, Loftsson T, Lehr C-M. Assessment of mucoadhesion by a resonant mirror biosensor. Int J Pharm. 2006;325:75–81.

    Article  PubMed  CAS  Google Scholar 

  31. Li DX, Yamamoto H, Takeuchi H, Kawashima Y. A novel method for modifying AFM probe to investigate the interaction between biomaterial polymers (Chitosan-coated PLGA) and mucin film. Eur J Pharm Biopharm. 2010;75:277–83.

    Article  PubMed  CAS  Google Scholar 

  32. Soane RJ, Hinchcliffe M, Davis SS, Illum L. Clearance characteristics of chitosan based formulations in the sheep nasal cavity. Int J Pharm. 2001;217:183–91.

    Article  PubMed  CAS  Google Scholar 

  33. Davies OR, Lewis AL, Whitaker MJ, Tai H, Shakesheff KM, Howdle SM. Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering. Adv Drug Deliv Rev. 2008;60:373–87.

    Article  PubMed  CAS  Google Scholar 

  34. Koushik K, Kompella U. Preparation of large porous deslorelin-PLGA microparticles with reduced residual solvent and cellular uptake using a supercritical carbon dioxide process. Pharm Res. 2004;21:524–35.

    Article  PubMed  CAS  Google Scholar 

  35. Licence P, Dellar MP, Wilson RGM, Fields PA, Litchfield D, Woods HM, et al. Large-aperture variable-volume view cell for the determination of phase-equilibria in high pressure systems and supercritical fluids. Rev Sci Instru. 2004;75:3233–6.

    Article  CAS  Google Scholar 

  36. Hao J, Whitaker MJ, Wong B, Serhatkulu G, Shakesheff KM, Howdle SM. Plasticization and spraying of poly (DL-lactic acid) using supercritical carbon dioxide: control of particle size. J Pharm Sci. 2004;93:1083–90.

    Google Scholar 

  37. Whitaker MJ, Hao J, Davies OR, Serhatkulu G, Stolnik-Trenkic S, Howdle SM, et al. The production of protein-loaded microparticles by supercritical fluid enhanced mixing and spraying. J Control Rel. 2005;101:85–92.

    Article  CAS  Google Scholar 

  38. Mantle M, Allen A. A colorimetric assay for glycoproteins based on the periodic/Schiff stain. Biochem Soc Trans. 1978;6:607–9.

    PubMed  CAS  Google Scholar 

  39. He P, Davis SS, Illum L. in vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int J Pharm. 1998;166:75–88.

    Article  CAS  Google Scholar 

  40. Reverchon E, Antonacci A. Drug-polymer microparticles produced by supercritical assisted atomization. Biotech Bioeng. 2007;97:1626–37.

    Article  CAS  Google Scholar 

  41. Amidi M, Pellikaan HC, de Boer AH, Crommelin DJA, Hennink WE, Jiskoot W. Preparation and physicochemical characterization of supercritically dried insulin-loaded microparticles for pulmonary delivery. Eur J Pharm Biopharm. 2008;68:191–200.

    Article  PubMed  CAS  Google Scholar 

  42. Nie H, Lee LY, Tong H, Wang C-H. PLGA/chitosan composites from a combination of spray drying and supercritical fluid foaming techniques: new carriers for DNA delivery. J Control Rel. 2008;129:207–14.

    Article  CAS  Google Scholar 

  43. Okamoto H, Nishida S, Todo H, Sakakura Y, Iida K, Danjo K. Pulmonary gene delivery by chitosan-pDNA complex powder prepared by a supercritical carbon dioxide process. J Pharm Sci. 2003;92:371–80.

    Article  PubMed  CAS  Google Scholar 

  44. Okamoto H, Sakakura Y, Shiraki K, Oka K, Nishida S, Todo H, et al. Stability of chitosan-pDNA complex powder prepared by supercritical carbon dioxide process. Int J Pharm. 2005;290:73–81.

    Article  PubMed  CAS  Google Scholar 

  45. Zhu AP, Fang N, Chan-Park MB, Chan V. Adhesion contact dynamics of 3T3 fibroblasts on poly (lactide-co-glycolide acid) surface modified by photochemical immobilization of biomacromolecules. Biomaterials. 2006;27:2566–76.

    Article  PubMed  CAS  Google Scholar 

  46. Fischer S, Foerg C, Ellenberger S, Merkle HP, Gander B. One-step preparation of polyelectrolyte-coated PLGA microparticles and their functionalization with model ligands. J Control Rel. 2006;111:135–44.

    Article  CAS  Google Scholar 

  47. Grenha A, Seijo B, Serra C, Remunan-Lopez C. Chitosan nanoparticle-loaded mannitol microspheres: structure and surface characterization. Biomacromolecules. 2007;8:2072–9.

    Article  PubMed  CAS  Google Scholar 

  48. Belu AM, Graham DJ, Castner DG. Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces. Biomaterials. 2003;24:3635–53.

    Article  PubMed  CAS  Google Scholar 

  49. Chesko J, Kazzaz J, Ugozzoli M, Singh M, O’Hagan DT, Madden C, et al. Characterization of antigens adsorbed to anionic PLG microparticles by XPS and TOF-SIMS. J Pharm Sci. 2008;97:1443–53.

    Article  PubMed  CAS  Google Scholar 

  50. Dhawan S, Singla AK, Sinha VR. Evaluation of mucoadhesive properties of chitosan microspheres prepared by different methods. AAPS PharmSciTech. 2004;5:67.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Tamsin Gamble (Critical Pharmaceuticals Ltd.) for PGSS technical support and Nikolaidi Dimitra (School of Pharmacy, University of Nottingham) for valuable help with the XPS characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisbeth Illum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casettari, L., Castagnino, E., Stolnik, S. et al. Surface Characterisation of Bioadhesive PLGA/Chitosan Microparticles Produced by Supercritical Fluid Technology. Pharm Res 28, 1668–1682 (2011). https://doi.org/10.1007/s11095-011-0403-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0403-z

KEY WORDS

Navigation