Skip to main content
Log in

From Drug Delivery Systems to Drug Release, Dissolution, IVIVC, BCS, BDDCS, Bioequivalence and Biowaivers

  • Meeting Report
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

This is a summary report of the conference on drug absorption and bioequivalence issues held in Titania Hotel in Athens (Greece) from the 28th to the 30th of May 2009. The conference included presentations which were mainly divided into three sections. The first section focused on modern drug delivery systems such as polymer nanotechnology, cell immobilization techniques to deliver drugs into the brain, nanosized liposomes used in drug eluting stents, encapsulation of drug implants in biocompatible polymers, and application of differential scanning calorimetry as a tool to study liposomal stability. The importance of drug release and dissolution were also discussed by placing special emphasis on camptothecins and oral prolonged release formulations. The complexity of the luminal environment and the value of dissolution in lyophilized products were also highlighted. The second session of the conference included presentations on the Biopharmaceutics Classification Scheme (BCS), the Biopharmaceutics Drug Disposition Classification System (BDDCS), and the role of transporters in the classification of drugs. The current status of biowaivers and a modern view on non-linear in vitroin vivo (IVIVC) correlations were also addressed. Finally, this section ended with a special topic on biorelevant dissolution media and methods. The third day of the conference was dedicated to bioequivalence. Emphasis was placed on high within-subject variability and its impact on study design. Two unresolved issues of bioequivalence were also discussed: the use of generic antiepileptic drugs and the role of metabolites in bioequivalence assessment. Finally, the conference closed with a presentation of the current regulatory status of WHO and EMEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. European Medicines Agency, Evaluation of Medicines for Human Use, CPMP. Note for Guidance on the Investigation of Bioavailability and Bioequivalence, London; 2001.

  2. Center for Drug Evaluation and Research (CDER), Food and Drug Administration. Bioavailability and Bioequivalence Studies for Orally Administered Drug Products. General Considerations, Rockville, MD; 2003.

  3. European Medicines Agency, Evaluation of Medicines for Human Use, CPMP. Guideline on the investigation of Bioequivalence, London; 2008.

  4. Center for Drug Evaluation and Research (CDER), Food and Drug Administration. Guidance for Industry. Extended release oral dosage forms: development, evaluation, and application of in vitro/in vivo correlations, Rockville, MD; 1997.

  5. Center for Drug Evaluation and Research (CDER), Food and Drug Administration. Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. Rockville, MD, 2000.

  6. Amidon G, Lennernas H, Shah V, Crison J. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  CAS  PubMed  Google Scholar 

  7. Wu C, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22:11–23.

    Article  CAS  PubMed  Google Scholar 

  8. Kim S, Kim JH, Jeon O, Kwon IC, Park K. Engineered polymers for advanced drug delivery. Eur J Pharm Biopharm. 2009;71:420–30.

    Article  CAS  PubMed  Google Scholar 

  9. Sandhiya S, Dkhar SA, Surendiran A. Emerging trends of nanomedicine—an overview. Fundam Clin Pharmacol. 2009;23:263–9.

    Article  CAS  PubMed  Google Scholar 

  10. Nune SK, Gunda P, Thallapally PK, Lin YY, Forrest ML, Berkland CJ. Nanoparticles for biomedical imaging. Expert Opin Drug Deliv. 2009;6:1175–94.

    Article  CAS  PubMed  Google Scholar 

  11. Saravanakumar G, Kim K, Park JH, Rhee K, Kwon IC. Current status of nanoparticle-based imaging agents for early diagnosis of cancer and atherosclerosis. J Biomed Nanotechnol. 2009;5:20–35.

    Article  CAS  PubMed  Google Scholar 

  12. Orive G, Gascón AR, Hernández RM, Igartua M, Luis Pedraz J. Cell microencapsulation technology for biomedical purposes: novel insights and challenges. Trends Pharmacol Sci. 2003;24:207–10.

    CAS  PubMed  Google Scholar 

  13. Orive G, Hernández RM, Rodríguez Gascón A, Calafiore R, Chang TM, de Vos P. History, challenges and perspectives of cell microencapsulation. Trends Biotechnol. 2004;22:87–92.

    Article  CAS  PubMed  Google Scholar 

  14. Murua A, Portero A, Orive G, Hernández RM, de Castro M, Pedraz JL. Cell microencapsulation technology: towards clinical application. J Control Release. 2008;132:76–83.

    Article  CAS  PubMed  Google Scholar 

  15. García-García HM, Vaina S, Tsuchida K, Serruys PW. Drug-eluting stents. Arch Cardiol Mex. 2006;76:297–319.

    PubMed  Google Scholar 

  16. Antimisiaris SG, Siablis D, Liatsikos E, Kalogeropoulou C, Tsota I, Tsotas V, et al. Liposome-coated metal stents: an in vitro evaluation of controlled-release modality in the ureter. J Endourol. 2000;14:743–7.

    Article  CAS  PubMed  Google Scholar 

  17. Antimisiaris SG, Koromila G, Michanetzis G, Missirlis YF. Liposome coated stents: a method to deliver drugs to the site of action and improve stent blood-compatibility. J Liposome Res. 2006;16:303–9.

    Article  CAS  PubMed  Google Scholar 

  18. Kallinteri P, Antimisiaris SG, Karnabatidis D, Kalogeropoulou C, Tsota I, Siablis D. Dexamethasone incorporating liposomes: an in vitro study of their applicability as a slow releasing delivery system of dexamethasone from covered metallic stents. Biomaterials. 2002;23:4819–26.

    Article  CAS  PubMed  Google Scholar 

  19. Carrasquillo KG, Ricker JA, Rigas IK, Miller JW, Gragoudas ES, Adamis AP. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres. Invest Ophthalmol Vis Sci. 2003;44:290–9.

    Article  PubMed  Google Scholar 

  20. Korsgren O, Nilsson B. Improving islet transplantation: a road map for a widespread application for the cure of persons with type I diabetes. Curr Opin Organ Transplant. 2009;14:683–7.

    Article  PubMed  Google Scholar 

  21. Spink CH. Differential scanning calorimetry. Methods Cell Biol. 2008;84:115–41.

    Article  CAS  PubMed  Google Scholar 

  22. Demetzos C. Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability. J Liposome Res. 2008;18:159–73.

    Article  CAS  PubMed  Google Scholar 

  23. Mavromoustakos TM. The use of differential scanning calorimetry to study drug-membrane interactions. Methods Mol Biol. 2007;400:587–600.

    Article  CAS  PubMed  Google Scholar 

  24. Sriram D, Yogeeswari P, Thirumurugan R, Bal TR. Camptothecin and its analogues: a review on their chemotherapeutic potential. Nat Prod Res. 2005;19:393–412.

    Article  CAS  PubMed  Google Scholar 

  25. Burke TG, Bom D. Camptothecin design and delivery approaches for elevating anti-topoisomerase I activities in vivo. Ann N Y Acad Sci. 2000;922:36–45.

    Article  CAS  PubMed  Google Scholar 

  26. Hatefi A, Amsden B. Camptothecin delivery methods. Pharm Res. 2002;19:1389–99.

    Article  CAS  PubMed  Google Scholar 

  27. Joguparthi V, Feng S, Anderson BD. Determination of intraliposomal pH and its effect on membrane partitioning and passive loading of a hydrophobic camptothecin, DB-67. Int J Pharm. 2008;352:17–28.

    Article  CAS  PubMed  Google Scholar 

  28. Onishi H, Machida Y. Macromolecular and nanotechnological modification of camptothecin and its analogs to improve the efficacy. Curr Drug Discov Technol. 2005;2:169–83.

    Article  CAS  PubMed  Google Scholar 

  29. Porter CJ, Pouton CW, Cuine JF, Charman WN. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev. 2008;60:673–91.

    Article  CAS  PubMed  Google Scholar 

  30. Singh BN. Modified-release solid formulations for colonic delivery. Recent Pat Drug Deliv Formul. 2007;1:53–63.

    Article  CAS  PubMed  Google Scholar 

  31. Waterman KC. A critical review of gastric retentive controlled drug delivery. Pharm Dev Technol. 2007;12:1–10.

    Article  CAS  PubMed  Google Scholar 

  32. Fleisher D, Li C, Zhou Y, Pao LH, Karim A. Drug, meal and formulation interactions influencing drug absorption after oral administration clinical implications. Clin Pharmacokin. 1999;36:233–54.

    Article  CAS  Google Scholar 

  33. Diakidou A, Vertzoni M, Abrahamsson B, Dressman J, Reppas C. Simulation of gastric lipolysis and prediction of felodipine release from a matrix tablet in the fed stomach. Eur J Pharm Sci. 2009;37:133–40.

    Article  CAS  PubMed  Google Scholar 

  34. Vertzoni M, Fotaki N, Kostewicz E, Stippler E, Leuner C, Nicolaides E, et al. Dissolution media simulating the intralumenal composition of the small intestine: physiological issues and practical aspects. J Pharm Pharmacol. 2004;56:453–62.

    Article  CAS  PubMed  Google Scholar 

  35. Markopoulos C, Vertzoni M, Agalias A, Magiatis P, Reppas C. Stability of oleuropein in the human proximal gut. J Pharm Pharmacol. 2009;61:143–9.

    Article  CAS  PubMed  Google Scholar 

  36. Diakidou A, Vertzoni M, Goumas K, Söderlind E, Abrahamsson B, Dressman J, et al. Characterization of the contents of ascending colon to which drugs are exposed after oral administration to healthy adults. Pharm Res. 2009;26:2141–51.

    Article  CAS  PubMed  Google Scholar 

  37. Krause T, Gerbershagen MU, Fiege M, Weisshorn R, Wappler F. Dantrolene—a review of its pharmacology, therapeutic use and new developments. Anaesthesia. 2004;59:364–73.

    Article  CAS  PubMed  Google Scholar 

  38. Teagarden DL, Baker DS. Practical aspects of lyophilization using non-aqueous co-solvent systems. Eur J Pharm Sci. 2002;15:115–33.

    Article  CAS  PubMed  Google Scholar 

  39. World Health Organization. WHO Technical Report Series, No 937, Annex 7. Multisource (generic) pharmaceutical products: guidelines on registration requirements to establish interchangeability (2006).

  40. Moore JW, Flanner HH. Mathematical comparison of curves with an emphasis on in vitro dissolution profiles. Pharm Tech. 1996;20:64–74.

    Google Scholar 

  41. Shah VP, Tsong Y, Sathe P. In vitro dissolution profile comparison—statistics and analysis of the similarity factor, f2. Pharm Res. 1998;15:889–96.

    Article  CAS  PubMed  Google Scholar 

  42. Custodio JM, Wu CY, Benet LZ. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv Drug Deliv Rev. 2008;60:717–33.

    Article  CAS  PubMed  Google Scholar 

  43. Shugarts S, Benet LZ. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res. 2009;26:2039–54.

    Article  CAS  PubMed  Google Scholar 

  44. Benet LZ, Amidon GL, Barends DM, Lennernäs H, Polli JE, Shah VP, et al. The use of BDDCS in classifying the permeability of marketed drugs. Pharm Res. 2008;25:483–8.

    Article  CAS  PubMed  Google Scholar 

  45. Lau YY, WU CY, Okochi H, Benet LZ. Ex situ inhibition of hepatic uptake and efflux significantly changes metabolism: hepatic enzyme-transporter interplay. J Pharmacol Exp Ther. 2004;308:1040–5.

    Article  CAS  PubMed  Google Scholar 

  46. Lau YY, Okochi H, Huang Y, Benet LZ. Multiple transporters affect the disposition of atrorvastatin and its two active hydroxy metabolites: application of in vitro and ex situ systems. J Pharmacol Exp Ther. 2006;316:762–71.

    Article  CAS  PubMed  Google Scholar 

  47. Lau YY, Okochi H, Huang Y, Benet LZ. Pharmacokinetics of atorvastatin and its hydroxy metabolites in rats and the effects of concomitant rifampicin single doses: relevance of first-pass effecr from hepatic uptake transporters, and intestinal and hepatic metabolism. Drug Metab Dispos. 2006;34:1175–81.

    Article  CAS  PubMed  Google Scholar 

  48. Lau YY, Huang Y, Frassetto L, Benet LZ. Effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin Pharmacol Ther. 2007;81:194–204.

    Article  CAS  PubMed  Google Scholar 

  49. Rinaki E, Valsami G, Macheras P. Quantitative biopharmaceutics classification system: the central role of dose/solubility ratio. Pharm Res. 2003;20:1917–25.

    Article  CAS  PubMed  Google Scholar 

  50. Rinaki E, Dokoumetzidis A, Valsami G, Macheras P. Identification of biowaivers among Class II drugs: theoretical justification and practical examples. Pharm Res. 2004;21:1567–72.

    Article  CAS  PubMed  Google Scholar 

  51. Valsami G, Dokoumetzidis A, Macheras P. Modeling of supersaturated dissolution data. Int J Pharm. 1999;181:153–7.

    Article  CAS  PubMed  Google Scholar 

  52. Papadopoulou V, Valsami G, Dokoumetzidis A, Macheras P. Biopharmaceutics classification systems for new molecular entities (BCS-NMEs) and marketed drugs (BCS-MD): theoretical basis and practical examples. Int J Pharm. 2008;361:70–7.

    Article  CAS  PubMed  Google Scholar 

  53. European Medicines Agency, Evaluation of Medicines for Human Use, CHMP efficacy working party) therapeutic subgroup on pharmacokinetics: Questions & Answers on the Bioavailability and Bioequivalence Guideline, London (2006).

  54. Yu LX. Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res. 2008;25:781–91.

    Article  CAS  PubMed  Google Scholar 

  55. ICH Harmonised Tripartite Guideline, Pharmaceutical Development, Q8(R2), Step 4 (2009).

  56. Vertzoni M, Pastelli E, Psachoulias D, Kalantzi L, Reppas C. Estimation of intragastric solubility of drugs: in what medium? Pharm Res. 2007;24:909–17.

    Article  CAS  PubMed  Google Scholar 

  57. Jantratid E, De Maio V, Ronda E, Mattavelli V, Vertzoni M, Dressman JB. Application of biorelevant dissolution tests to the prediction of the in vivo performance of diclofenac sodium from an oral modified-release pellet dosage form. Eur J Pharm Sci. 2009;37:434–41.

    Article  CAS  PubMed  Google Scholar 

  58. Galia E, Nicolaides E, Hörter D, Löbenberg R, Reppas C, Dressman JB. Evaluation of various dissolution media for predicting in vivo performance of Class I and II drugs. Pharm Res. 1998;15:698–705.

    Article  CAS  PubMed  Google Scholar 

  59. Vertzoni M, Dressman J, Butler J, Hempenstall J, Reppas C. Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds. Eur J Biopharm. 2005;60:413–7.

    Article  CAS  Google Scholar 

  60. Dressman JB, Berardi RR, Dermentzoglou LC, Russell TL, Schmaltz SP, Barnett JL, et al. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res. 1990;7:756–61.

    Article  CAS  PubMed  Google Scholar 

  61. Zangenberg NH, Mullertz A, Kristensen HG, Hovgaard L. A dynamic in vitro lipolysis model. II: Evaluation of the model. Eur J Pharm Sci. 2001;14:237–44.

    Article  CAS  PubMed  Google Scholar 

  62. Jantratid E, Janssen N, Chokshi H, Tang K, Dressman JB. Designing biorelevant dissolution tests for lipid formulations: case example—lipid suspension of RZ-50. Eur J Pharm Biopharm. 2008;69:776–85.

    Article  CAS  PubMed  Google Scholar 

  63. Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25:1663–76.

    Article  CAS  PubMed  Google Scholar 

  64. Garbacz G, Wedemeyer RS, Nagel S, Giessmann T, Monnikes H, Wilson CG, et al. Irregular absorption profiles observed from diclofenac extended release tablets can be predicted using a dissolution test apparatus that mimics in vivo physical stresses. Eur J Pharm Biopharm. 2008;70:421–8.

    Article  CAS  PubMed  Google Scholar 

  65. Cardot JM, Beyssac E. In vitro/in vivo correlations: scientific implications and standardization. Eur J Drug Metab Pharmacokinet. 1993;18:113–20.

    CAS  PubMed  Google Scholar 

  66. Polli JE, Crison JR, Amidon GL. Novel approach to the analysis of in vitroin vivo relationships. J Pharm Sci. 1996;85:753–60.

    Article  CAS  PubMed  Google Scholar 

  67. Dunne A, O’ Hara T, Devane J. A new approach to modelling the relationship between in vitro and in vivo drug dissolution/absorption. Stat Med. 1999;18:1865–76.

    Article  CAS  PubMed  Google Scholar 

  68. Ritger PL, Peppa NA. A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5:23–36.

    Article  CAS  Google Scholar 

  69. Kosmidis K, Argyrakis P, Macheras P. A reappraisal of drug release laws using Monte Carlo simulations: the prevalence of the Weibull function. Pharm Res. 2003;20:988–95.

    Article  CAS  PubMed  Google Scholar 

  70. Kosmidis K, Macheras P. Monte Carlo simulations for the study of drug release from matrices with high and low diffusivity areas. Int J Pharmaceutics. 2007;343:166–72.

    Article  CAS  Google Scholar 

  71. Casault S, Slater GW. Comments concerning: Monte Carlo simulations for the study of drug release from matrices with high and low diffusivity areas. Int J Pharmaceutics. 2009;365:214–5.

    Article  CAS  Google Scholar 

  72. Sokolov I, Klafter J, Blumen A. Fractional kinetics. Phys Today. 2002;55:48–54.

    Article  CAS  Google Scholar 

  73. Magin RL. Fractional calculus in bioengineering. Crit Rev Biomed Eng. 2004;32:1–104.

    Article  PubMed  Google Scholar 

  74. Dokoumetzidis A, Macheras P. Fractional kinetics in drug absorption and disposition processes. J Pharmacokin Pharmacodyn. 2009;36:165–78.

    Article  CAS  Google Scholar 

  75. Midha K, Shah V, Singh G, Patnaik R. Conference report: Bio-International 2005. J Pharm Sci. 2007;96:747–54.

    Article  CAS  PubMed  Google Scholar 

  76. Midha KK, Rawson MJ, Hubbard JW. The bioequivalence of highly variable drugs and drug products. Int J Clin Pharmacol Ther. 2005;43:485–98.

    CAS  PubMed  Google Scholar 

  77. Blume HH, Midha KK. Bio-international ‘92, Conference on bioavailability, bioequivalence and pharmacokinetic studies. J Pharm Sci. 1993;11:1186–9.

    Article  Google Scholar 

  78. Blume HH, McGilveray IJ, Midha KK. Bio-International 94, Conference on bioavailability, bioequivalence and pharmacokinetic studies. Eur J Pharm Sci. 1995;3:113–24.

    Article  CAS  Google Scholar 

  79. Shah V, Yacobi A, Barr W, Benet L, Breimer D, Dobrinska M, et al. Absorption of orally administered highly variable drugs and drug formulations. Pharm Res. 1996;13:1590–4.

    Article  CAS  PubMed  Google Scholar 

  80. Boddy A, Snikeris F, Kringle R, Wei G, Oppermann J, Midha K. An approach for widening the bioequivalence acceptance limits in the case of highly variable drugs. Pharm Res. 1995;12:1865–8.

    Article  CAS  PubMed  Google Scholar 

  81. Tothfalusi L, Endrenyi L. Limits for the scaled average bioequivalence of highly variable drugs and drug products. Pharm Res. 2003;20:382–9.

    Article  CAS  PubMed  Google Scholar 

  82. Tothfalusi L, Endrenyi L, Midha K. Scaling or wider bioequivalence limits for highly variable drugs and for the special case of Cmax. Int J Clin Pharmacol Ther. 2003;41:217–25.

    CAS  PubMed  Google Scholar 

  83. Karalis V, Symillides M, Macheras P. Novel scaled average bioequivalence limits based on GMR and variability considerations. Pharm Res. 2004;21:1933–42.

    Article  CAS  PubMed  Google Scholar 

  84. Karalis V, Macheras P, Symillides M. Geometric mean ratio dependent scaled bioequivalence limits with levelling-off properties. Eur J Pharm Sci. 2005;26:54–61.

    Article  CAS  PubMed  Google Scholar 

  85. Kytariolos J, Karalis V, Macheras P, Symillides M. Novel scaled bioequivalence limits with levelling-off properties. Pharm Res. 2006;23:2657–64.

    Article  CAS  PubMed  Google Scholar 

  86. Haidar SH, Davit B, Chen ML, Conner D, Lee L, Li QH, et al. Bioequivalence approaches for highly variable drugs and drug products. Pharm Res. 2008;25:237–41.

    Article  CAS  PubMed  Google Scholar 

  87. Patterson SD, Zariffa NM, Montague TH, Howland K. Non-traditional study designs to demonstrate average bioequivalence for highly variable drug products. Eur J Clin Pharmacol. 2001;57:663–70.

    Article  CAS  PubMed  Google Scholar 

  88. Bialer M. Generic products of antiepileptic drugs (AEDs): is it an issue? Epilepsia. 2007;48:1825–32.

    Article  PubMed  Google Scholar 

  89. Midha KK, Rawson MJ, Hubbard JW. Prescribability and switchability of highly variable drugs and drug products. J Control Release. 1999;62:33–40.

    Article  CAS  PubMed  Google Scholar 

  90. Hauck WW, Anderson S. Measuring switchability and prescribability: when is average bioequivalence sufficient? J Pharmacokin Biopharm. 1994;22:551–64.

    Article  CAS  Google Scholar 

  91. Andermann F, Duth MS, Gosselin A, Paradis PE. Compulsory generic switching of antiepileptic drugs: high switchback rates to branded compounds compared with other drug classes. Epilepsia. 2007;48:464–9.

    Article  CAS  PubMed  Google Scholar 

  92. Kramer G, Steinhoff J, Feucht M, Pfafflin M, May TW. Experience with generic drugs in epilepsy patients: an electronic survey of members of the German, Austrian and Swiss branches of the ILAE. Epilepsia. 2007;48(3):609–11.

    Article  PubMed  Google Scholar 

  93. Tucker G, Rostami A, Jackson P. Metabolite measurement in bioequivalence studies: theoretical considerations. In: Midha KK, Blume H, editors. Bio-International: bioavailability, bioequivalence and pharmacokinetics. International Conference of FIP. “Bio-International’92”, Bad Homburg, Germany, Medpharm Scientific Publishers, Stuttgart; 1993. pp. 163–170.

  94. Jackson AJ, Robbie G, Marroum P. Metabolites and bioequivalence: past and present. Clin Pharmacokinet. 2004;43:655–72.

    Article  CAS  PubMed  Google Scholar 

  95. Midha KK, Rawson MJ, Hubbard JW. The role of metabolites in bioequivalence. Pharm Res. 2004;21:1331–44.

    Article  CAS  PubMed  Google Scholar 

  96. Endrenyi L, Tothfalusi L. Truncated AUC evaluates effectively the bioequivalence of drugs with long half-lives. Int J Clin Pharmacol Ther. 1997;35:142–50.

    CAS  PubMed  Google Scholar 

  97. McGilveray I, Midha K, Skelly J, Dighe S, Doluisio J, French I, et al. Consensus report from “Bio International ‘89”: issues in the evaluation of bioavailability data. J Pharm Sci. 1990;79:945–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod P. Shah.

Additional information

Contributors

Ick Chan Kwon (Biomedical Research Center, Korea Institute of Science and Technology), Gorka Orive (Faculty of Pharmacy, University of the Basque Country, Spain), Sophia Antimisiaris (Faculty of Pharmacy, University of Patras, Greece), Dimitri Hatziavramidis (School of Chemical Engineering, National Technical University of Athens, Greece), Costas Demetzos (Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece), Michalakis Savva (Arnold & Marie Schwartz College of Pharmacy and Health Science, Long Island, NY, USA), Evangelos Karavas (Pharmathen SA, Athens, Greece), Christos Reppas (Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece), George Digenis (US World Meds and University of Kentucky, Lexington, USA), Vinod P. Shah (Scientific Secretary of FIP), Leslie Z. Benet (University of California, San Francisco, CA, USA), Panos Macheras (Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece), Maria Vertzoni (Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece), Kamal K. Midha (President of FIP), Achiel Van Peer (Johnson and Johnson, Beerse, Belgium), Meir Bialer (School of Pharmacy, The Hebrew University of Jerusalem, Israel), Vangelis Karalis (Thriassio General Hospital of Elefsina, Greece, Jose A. Morais (University of Lisbon, Lisbon, Portugal)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karalis, V., Magklara, E., Shah, V.P. et al. From Drug Delivery Systems to Drug Release, Dissolution, IVIVC, BCS, BDDCS, Bioequivalence and Biowaivers. Pharm Res 27, 2018–2029 (2010). https://doi.org/10.1007/s11095-010-0220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0220-9

Keywords

Navigation