Skip to main content

Advertisement

Log in

An Acid Sensitive Ketal-Based Polyethylene Glycol-Oligoethylenimine Copolymer Mediates Improved Transfection Efficiency at Reduced Toxicity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Dynamic PEG-polycation copolymers that release PEG and degrade into small fragments after cell entry might present efficient and biocompatible gene carriers.

Methods

PEG-OEI-MK was synthesized by copolymerization of 5 kDa polyethyleneglycol (PEG) and 800 Da oligoethylenimines through acid-degradable acetone-bis-(N-maleimidoethyl)ketal linkers (MK). To evaluate any benefit of the reversible over stable linkage, also the corresponding pH-stable analog, PEG-OEI-BM, was synthesized via ether linkages. Luciferase and GFP expression plasmids were used for transfections, in vivo biocompatibility was evaluated by intravenous application of polymers in Balb/c mice.

Results

PEG-OEI-MK showed efficient DNA binding as analyzed by ethidium bromide exclusion, resulting in formation of polyplexes with sizes around 100 nm and surface charges of below 5 mV zeta potential. This surface shielding of PEG-OEI-MK polyplexes remained stable at neutral pH 7.4, while polyplexes deshielded and aggregated at pH 5 within 15–30 min. Cell culture experiments demonstrated reduced polymer toxicity compared to the non-PEGylated OEI-MK. Transfection experiments demonstrated reduced gene expression of PEG-OEI-BM compared with the non-PEGylated analog OEI-BM, whereas the pH-reversible polymer PEG-OEI-MK mediated a significant increased transfection efficiency over the non-PEGylated OEI-MK.

Conclusions

PEG-OEI-MK mediated the highest gene transfer at lowest cytotoxicity levels and also best in vivo biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

AP:

alkaline phosphatase

AST:

aspartate aminotransferase

BM:

1,8-bis-maleimidodiethyleneglycol

DCM:

dichloro methane

EtBr:

ethidium bromide

FCS:

fetal calf serum

HBG:

Hepes buffered glucose (5% (w/v) glucose, 20 mM Hepes, pH 7.4)

0.5× HBS:

Hepes buffered salt (2.5% glucose (w/v), 75 mM NaCl, 20 mM Hepes, pH 7.4)

Hepes:

N-2-hydroxyethylpiperazine-N′-2-ethane sulfonic acid

MFI:

mean fluorescence intensity

MK:

2,2-bis(N-maleimidoethyloxy) propane

m.w.:

molecular weight

Mw:

molecular weight by weight

NaOAc:

sodium acetate

OEI800:

oligoethylenimine with an average molecular weight of 800 Da

PEG5K-SH:

methoxy poly(ethylene glycol) thiol, average molecular weight 5 kDa

PEI25K:

branched polyethylenimine with an average molecular weight of 25 kDa

PEI22K:

linear polyethylenimine with an average molecular weight of 22 kDa

RLU:

relative light units

s.d.:

standard deviation

U/l (37°C):

units per liter plasma, measured at 37°C

References

  1. J. Wang, H. Q. Mao, and K. W. Leong. A novel biodegradable gene carrier based on polyphosphoester. J. Am. Chem. Soc. 123:9480–9481 (2001). doi:10.1021/ja016062m.

    Article  PubMed  CAS  Google Scholar 

  2. Y. B. Lim, S. M. Kim, H. Suh, and J. S. Park. Biodegradable, endosome disruptive, and cationic network-type polymer as a highly efficient and nontoxic gene delivery carrier. Bioconjug. Chem. 13:952–957 (2002). doi:10.1021/bc025541n.

    Article  PubMed  CAS  Google Scholar 

  3. M. L. Forrest, J. T. Koerber, and D. W. Pack. A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjug. Chem. 14:934–940 (2003). doi:10.1021/bc034014g.

    Article  PubMed  CAS  Google Scholar 

  4. D. G. Anderson, D. M. Lynn, and R. Langer. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem. Int. Ed. Engl. 42:3153–3158 (2003). doi:10.1002/anie.200351244.

    Article  PubMed  CAS  Google Scholar 

  5. J. J. Green, J. Shi, E. Chiu, E. S. Leshchiner, R. Langer, and D. G. Anderson. Biodegradable polymeric vectors for gene delivery to human endothelial cells. Bioconjug. Chem. 17:1162–1169 (2006). doi:10.1021/bc0600968.

    Article  PubMed  CAS  Google Scholar 

  6. J. Kloeckner, E. Wagner, and M. Ogris. Degradable gene carriers based on oligomerized polyamines. Eur. J. Pharm. Sci. 29:414–425 (2006). doi:10.1016/j.ejps.2006.08.002.

    Article  PubMed  CAS  Google Scholar 

  7. M. Thomas, J. J. Lu, C. Zhang, J. Chen, and A. M. Klibanov. Identification of novel superior polycationic vectors for gene delivery by high-throughput synthesis and screening of a combinatorial library. Pharm. Res. 24:1564–1571 (2007). doi:10.1007/s11095-007-9279-3.

    Article  PubMed  CAS  Google Scholar 

  8. L. V. Christensen, C. W. Chang, W. J. Kim, S. W. Kim, Z. Zhong, C. Lin, J. F. Engbersen, and J. Feijen. Reducible poly(amido ethylenimine)s designed for triggered intracellular gene delivery. Bioconjug. Chem. 17:1233–1240 (2006). doi:10.1021/bc0602026.

    Article  PubMed  CAS  Google Scholar 

  9. D. S. Manickam, and D. Oupicky. Multiblock reducible copolypeptides containing histidine-rich and nuclear localization sequences for gene delivery. Bioconjug. Chem. 17:1395–1403 (2006). doi:10.1021/bc060104k.

    Article  PubMed  CAS  Google Scholar 

  10. Y. Lee, H. Mo, H. Koo, J. Y. Park, M. Y. Cho, G. W. Jin, and J. S. Park. Visualization of the degradation of a disulfide polymer, linear poly(ethylenimine sulfide), for gene delivery. Bioconjug. Chem. 18:13–18 (2007). doi:10.1021/bc060113t.

    Article  PubMed  CAS  Google Scholar 

  11. J. J. Hoon, L. V. Christensen, J. W. Yockman, Z. Zhong, J. F. Engbersen, K. W. Jong, J. Feijen, and K. S. Wan. Reducible poly(amido ethylenimine) directed to enhance RNA interference. Biomaterials. 28:1912–1917 (2007). doi:10.1016/j.biomaterials.2006.12.019.

    Article  Google Scholar 

  12. C. Lin, C. J. Blaauboer, M. M. Timoneda, M. C. Lok, M. van Steenbergen, W. E. Hennink, Z. Zhong, J. Feijen, and J. F. Engbersen. Bioreducible poly(amido amine)s with oligoamine side chains: synthesis, characterization, and structural effects on gene delivery. J. Control. Release. 126:166–174 (2008). doi:10.1016/j.jconrel.2007.11.012.

    Article  PubMed  CAS  Google Scholar 

  13. J. Kloeckner, S. Bruzzano, M. Ogris, and E. Wagner. Gene carriers based on hexanediol diacrylate linked oligoethylenimine: effect of chemical structure of polymer on biological properties. Bioconjug. Chem. 17:1339–1345 (2006). doi:10.1021/bc060133v.

    Article  PubMed  CAS  Google Scholar 

  14. V. Russ, H. Elfberg, C. Thoma, J. Kloeckner, M. Ogris, and E. Wagner. Novel degradable oligoethylenimine acrylate ester-based pseudodendrimers for in vitro and in vivo gene transfer. Gene Ther. 15:18–29 (2008). doi:10.1038/sj.gt.3303046.

    Article  PubMed  CAS  Google Scholar 

  15. S. Y. Wong, J. M. Pelet, and D. Putnam. Polymer systems for gene delivery—past, present, future. Prog. Polym. Sci. 32:799–837 (2007). doi:10.1016/j.progpolymsci.2007.05.007.

    Article  CAS  Google Scholar 

  16. V. Knorr, V. Russ, L. Allmendinger, M. Ogris, and E. Wagner. Acetal linked oligoethylenimines for use as pH-sensitive gene carriers. Bioconjug. Chem. 19:1625–1634 (2008). doi:10.1021/bc8001858.

    Google Scholar 

  17. C. Plank, K. Mechtler, F. C. Szoka Jr., and E. Wagner. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum. Gene Ther. 7:1437–1446 (1996). doi:10.1089/hum.1996.7.12-1437.

    Article  PubMed  CAS  Google Scholar 

  18. P. Chollet, M. C. Favrot, A. Hurbin, and J. L. Coll. Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. J. Gene Med. 4:84–91 (2002). doi:10.1002/jgm.237.

    Article  PubMed  Google Scholar 

  19. M. Ogris, S. Brunner, S. Schuller, R. Kircheis, and E. Wagner. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 6:595–605 (1999). doi:10.1038/sj.gt.3300900.

    Article  PubMed  CAS  Google Scholar 

  20. P. Erbacher, T. Bettinger, P. Belguise-Valladier, S. Zou, J. L. Coll, J. P. Behr, and J. S. Remy. Transfection and physical properties of various saccharide, poly(ethylene glycol), and antibody-derivatized polyethylenimines (PEI). J. Gene Med. 1:210–222 (1999). doi:10.1002/(SICI)1521-2254(199905/06)1:3<210::AID-JGM30>3.0.CO;2-U.

    Article  PubMed  CAS  Google Scholar 

  21. D. Oupicky, M. Ogris, K. A. Howard, P. R. Dash, K. Ulbrich, and L. W. Seymour. Importance of lateral and steric stabilization of polyelectrolyte gene delivery vectors for extended systemic circulation. Mol. Ther. 5:463–472 (2002). doi:10.1006/mthe.2002.0568.

    Article  PubMed  CAS  Google Scholar 

  22. M. Mannisto, S. Vanderkerken, V. Toncheva, M. Elomaa, M. Ruponen, E. Schacht, and A. Urtti. Structure-activity relationships of poly(L-lysines): effects of pegylation and molecular shape on physicochemical and biological properties in gene delivery. J. Control. Release. 83:169–182 (2002). doi:10.1016/S0168-3659(02)00178-5.

    Article  PubMed  CAS  Google Scholar 

  23. W. Li, Z. Huang, J. A. MacKay, S. Grube, and F. C. Szoka Jr. Low-pH-sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanolipoparticles: effects of PEG chain length, lipid composition and assembly conditions on gene delivery. J. Gene Med. 7:67–79 (2005). doi:10.1002/jgm.634.

    Article  PubMed  Google Scholar 

  24. M. Oishi, Y. Nagasaki, K. Itaka, N. Nishiyama, and K. Kataoka. Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J. Am. Chem. Soc. 127:1624–1625 (2005). doi:10.1021/ja044941d.

    Article  PubMed  CAS  Google Scholar 

  25. G. F. Walker, C. Fella, J. Pelisek, J. Fahrmeir, S. Boeckle, M. Ogris, and E. Wagner. Toward synthetic viruses: endosomal pH-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo. Mol. Ther. 11:418–425 (2005). doi:10.1016/j.ymthe.2004.11.006.

    Article  PubMed  CAS  Google Scholar 

  26. A. A. Kale, and V. P. Torchilin. “Smart” drug carriers: PEGylated TATp-modified pH-sensitive liposomes. J. Liposome Res. 17:197–203 (2007). doi:10.1080/08982100701525035.

    Article  PubMed  CAS  Google Scholar 

  27. V. Knorr, L. Allmendinger, G. F. Walker, F. F. Paintner, and E. Wagner. An acetal-based PEGylation reagent for pH-sensitive shielding of DNA polyplexes. Bioconjug. Chem. 18:1218–1225 (2007). doi:10.1021/bc060327a.

    Article  PubMed  CAS  Google Scholar 

  28. D. B. Rozema, D. L. Lewis, D. H. Wakefield, S. C. Wong, J. J. Klein, P. L. Roesch, S. L. Bertin, T. W. Reppen, Q. Chu, A. V. Blokhin, J. E. Hagstrom, and J. A. Wolff. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl. Acad. Sci U. S. A. 104:12982–12987 (2007). doi:10.1073/pnas.0703778104.

    Article  PubMed  CAS  Google Scholar 

  29. C. Fella, G. F. Walker, M. Ogris, and E. Wagner. Amine-reactive pyridylhydrazone-based PEG reagents for pH-reversible PEI polyplex shielding. Eur. J. Pharm. Sci. 34:309–320 (2008). doi:10.1016/j.ejps.2008.05.004.

    Google Scholar 

  30. H. Hatakeyama, H. Akita, K. Kogure, M. Oishi, Y. Nagasaki, Y. Kihira, M. Ueno, H. Kobayashi, H. Kikuchi, and H. Harashima. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther. 14:68–77 (2007). doi:10.1038/sj.gt.3302843.

    Article  PubMed  CAS  Google Scholar 

  31. M. Meyer, and E. Wagner. pH-responsive shielding of non-viral gene vectors. Expert. Opin. Drug Deliv. 3:563–571 (2006). doi:10.1517/17425247.3.5.563.

    Article  PubMed  CAS  Google Scholar 

  32. B. Brissault, A. Kichler, C. Guis, C. Leborgne, O. Danos, and H. Cheradame. Synthesis of linear polyethylenimine derivatives for DNA transfection. Bioconjug. Chem. 14:581–587 (2003). doi:10.1021/bc0200529.

    Article  PubMed  CAS  Google Scholar 

  33. C. Plank, K. Zatloukal, M. Cotten, K. Mechtler, and E. Wagner. Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand. Bioconjug. Chem. 3:533–539 (1992). doi:10.1021/bc00018a012.

    Article  PubMed  CAS  Google Scholar 

  34. F. Ungaro, G. De Rosa, A. Miro, and F. Quaglia. Spectrophotometric determination of polyethylenimine in the presence of an oligonucleotide for the characterization of controlled release formulations. J. Pharm. Biomed. Anal. 31:143–149 (2003). doi:10.1016/S0731-7085(02)00571-X.

    Article  PubMed  CAS  Google Scholar 

  35. R. Kircheis, A. Kichler, G. Wallner, M. Kursa, M. Ogris, T. Felzmann, M. Buchberger, and E. Wagner. Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Ther. 4:409–418 (1997). doi:10.1038/sj.gt.3300418.

    Article  PubMed  CAS  Google Scholar 

  36. S. Boeckle, K. von Gersdorff, S. van der Piepen, C. Culmsee, E. Wagner, and M. Ogris. Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J. Gene Med. 6:1102–1111 (2004). doi:10.1002/jgm.598.

    Article  PubMed  CAS  Google Scholar 

  37. K. von Gersdorff, M. Ogris, and E. Wagner. Cryoconserved shielded and EGF receptor targeted DNA polyplexes: cellular mechanisms. Eur. J. Pharm. Biopharm. 60:279–285 (2005). doi:10.1016/j.ejpb.2004.08.014.

    Article  Google Scholar 

  38. S. Han, R. I. Mahato, Y. K. Sung, and S. W. Kim. Development of biomaterials for gene therapy. Mol. Ther. 2:302–317 (2000). doi:10.1006/mthe.2000.0142.

    Article  PubMed  CAS  Google Scholar 

  39. D. W. Pack, A. S. Hoffman, S. Pun, and P. S. Stayton. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4:581–593 (2005). doi:10.1038/nrd1775.

    Article  PubMed  CAS  Google Scholar 

  40. E. Wagner, and J. Kloeckner. Gene delivery using polymer therapeutics. Adv. Polym. Sci. 192:135–173 (2006). doi:10.1007/12_023.

    Article  CAS  Google Scholar 

  41. D. Schaffert, and E. Wagner. Gene therapy progress and prospects: synthetic polymer-based systems. Gene Ther. 15:1131–1138 (2008). doi:10.1038/gt.2008.105.

  42. E. Wagner. Programmed drug delivery: nanosystems for tumor targeting. Expert. Opin. Biol. Ther. 7:587–593 (2007). doi:10.1517/14712598.7.5.587.

    Article  PubMed  CAS  Google Scholar 

  43. J. A. Wolff, and D. B. Rozema. Breaking the Bonds: Non-viral Vectors Become Chemically Dynamic. Mol. Ther. 16:8–15 (2008). doi:10.1038/sj.mt.6300326.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Olga Brück for skillful assistance in preparing the manuscript, as well as Wolfgang Roedl and Anna Kulinyak for competent technical assistance. This work was funded by the LMU university, by the DFG projects SFB 486 ‘Nanoman’ and SPP1230, the Nanosystems Initiative Munich (NIM), and the European Community FP6 network project ‘GIANT’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knorr, V., Ogris, M. & Wagner, E. An Acid Sensitive Ketal-Based Polyethylene Glycol-Oligoethylenimine Copolymer Mediates Improved Transfection Efficiency at Reduced Toxicity. Pharm Res 25, 2937–2945 (2008). https://doi.org/10.1007/s11095-008-9700-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9700-6

KEY WORDS

Navigation