Skip to main content
Log in

The Impact of Aqueous Solubility and Dose on the Pharmacokinetic Profiles of Resveratrol

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

An Erratum to this article was published on 23 August 2008

Abstract

Purpose

This study aimed at the investigation of the impact of aqueous solubility and dose manipulation on the pharmacokinetics of resveratrol.

Methods

Water soluble intravenous and oral formulations of resveratrol were prepared with hydroxypropyl-β-cyclodextrin (HP-β-CD) and randomly methylated-β-cyclodextrin (RM-β-CD), respectively. Sodium salt and suspension of resveratrol in carboxymethyl cellulose (CMC) were used as the reference intravenous and oral formulations, respectively. The pharmacokinetics of resveratrol was assessed in Sprague–Dawley rats. Plasma resveratrol concentrations were measured by high performance liquid chromatography (HPLC).

Results

Both HP-β-CD and RM-β-CD enhanced the aqueous solubility of resveratrol. After intravenous administration, rapid elimination of resveratrol was observed at all tested doses (5, 10, and 25 mg kg−1) regardless of formulation types; with non-linear elimination occurring at the dose of 25 mg kg−1. RM-β-CD significantly increased the maximal plasma concentration of orally administered resveratrol, but, it did not increase the oral bioavailability in comparison with the CMC suspension. Furthermore, the oral bioavailability remained unchanged among all tested doses (15, 25, and 50 mg kg−1).

Conclusions

Aqueous solubility barrier might affect the speed but not the extent of resveratrol absorption. Further, dose manipulation (up to 50 mg kg−1) did not have a significant impact on the oral bioavailability of resveratrol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AUC:

area under curve

C max :

maximum plasma concentration

CD:

cyclodextrin

Cl:

clearance

CMC:

carboxy methyl cellulose

F :

bioavailability

HP-β-CD:

hydroxypropyl-β-cyclodextrin

HPLC:

high performance liquid chromatography

LOQ:

limit of quantitation

PBS:

phosphate buffer solution

RM-β-CD:

randomly methylated-β-cyclodextrin

SGF:

simulated gastric fluid

SIF:

simulated intestinal fluid

T max :

time to reach C max

t 1/2 :

half life

V :

volume of distribution

References

  1. J. A. Baur, and D.A. Sinclair. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug. Discov. 5:493–506 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. J. A. Baur, K. J. Pearson, N. L. Price, H. A. Jamieson, C. Lerin, A. Kalra, V. V. Prabhu, J. S. Allard, G. Lopez-Lluch, K. Lewis, P. J. Pistell, S. Poosala, K. G. Becker, O. Boss, D. Gwinn, M. Wang, S. Ramaswamy, K. W. Fishbein, R. G. Spencer, E. G. Lakatta, D. Le Couteur, R. J. Shaw, P. Navas, P. Puigserver, D. K. Ingram, R. de Cabo, and D. A. Sinclair. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 444:337–342 (2006) doi:10.1038/nature05354.

    Article  PubMed  CAS  Google Scholar 

  3. M. Jang, L. Cai, G. O. Udeani, K. V. Slowing, C. F. Thomas, C. W. Beecher, H. H. Fong, N. R. Farnsworth, A. D. Kinghorn, R. G. Mehta, R. C. Moon, and J. M. Pezzuto. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 275:218–220 (1997) doi:10.1126/science.275.5297.218.

    Article  PubMed  CAS  Google Scholar 

  4. ClinicalTrial.gov. A service of the U.S. National Institutes of Health. http://www.clinicaltrial.gov/ct2/results?term=resveratrol.

  5. D. Delmas, A. Lancon, D. Colin, B. Jannin, and N. Latruffe. Resveratrol as a chemopreventive agent: a promising molecule for fighting cancer. Curr. Drug Targets. 7:423–442 (2006) doi:10.2174/138945006776359331.

    Article  PubMed  CAS  Google Scholar 

  6. D. M. Goldberg, J. Yan, and G. J. Soleas. Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin. Biochem. 36:79–87 (2003) doi:10.1016/S0009-9120(02)00397-1.

    Article  PubMed  CAS  Google Scholar 

  7. T. Walle, F. Hsieh, M. H. DeLegge, J. E. Oatis Jr., and U. K. Walle. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 32:1377–1382 (2004) doi:10.1124/dmd.104.000885.

    Article  PubMed  CAS  Google Scholar 

  8. D. J. Boocock, G. E. Faust, K. R. Patel, A. M. Schinas, V. A. Brown, M. P. Ducharme, T. D. Booth, J. A. Crowell, M. Perloff, A. J. Gescher, W. P. Steward, and D. E. Brenner. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol. Biomarkers Prev. 16:1246–1252 (2007) doi:10.1158/1055-9965.EPI-07-0022.

    Article  PubMed  CAS  Google Scholar 

  9. S. Hurst, C.M. Loi, J. Brodfuehrer, and A. El-Kattan. Impact of physiological, physicochemical and biopharmaceutical factors in absorption and metabolism mechanisms on the drug oral bioavailability of rats and humans. Expert Opin. Drug Metab. Toxicol. 3:469–489 (2007) doi:10.1517/17425255.3.4.469.

    Article  PubMed  CAS  Google Scholar 

  10. O. H. Chan, and B. H. Stewart. Physicochemical and drug-delivery considerations for oral drug bioavailability. Drug Discov. Today. 1:461–473 (1996) doi:10.1016/1359-6446(96)10039-8.

    Article  CAS  Google Scholar 

  11. M. I. Kaldas, U. K. Walle, and T. Walle. Resveratrol transport and metabolism by human intestinal Caco-2 cells. J. Pharm. Pharmacol. 55:307–312 (2003) doi:10.1211/002235702612.

    Article  PubMed  CAS  Google Scholar 

  12. A. Maier-Salamon, B. Hagenauer, M. Wirth, F. Gabor, T. Szekeres, and W. Jager. Increased transport of resveratrol across monolayers of the human intestinal Caco-2 cells is mediated by inhibition and saturation of metabolites. Pharm. Res. 23:2107–2115 (2006) doi:10.1007/s11095-006-9060-z.

    Article  PubMed  CAS  Google Scholar 

  13. V. Bertacche, N. Lorenzi, D. Nava, E. Pini, and C. Sinico. Host–guest interaction study of resveratrol with natural and modified cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 55:279–287 (2006) doi:10.1007/s10847-006-9047-8.

    Article  CAS  Google Scholar 

  14. J. F. Marier, P. Vachon, A. Gritsas, J. Zhang, J. P. Moreau, and M. P. Ducharme. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J. Pharmacol. Exp. Ther. 302:369–373 (2002) doi:10.1124/jpet.102.033340.

    Article  PubMed  CAS  Google Scholar 

  15. C. Yu, Y. G. Shin, A. Chow, Y. Li, J. W. Kosmeder, Y. S. Lee, W. H. Hirschelman, J. M. Pezzuto, R. G. Mehta, and R. B. van Breemen. Human, rat, and mouse metabolism of resveratrol. Pharm. Res. 19:1907–1914 (2002) doi:10.1023/A:1021414129280.

    Article  PubMed  CAS  Google Scholar 

  16. A. J. Gescher, and W. P. Steward. Relationship between mechanisms, bioavailibility, and preclinical chemopreventive efficacy of resveratrol: a conundrum. Cancer Epidemiol. Biomarkers Prev. 12:953–957 (2003).

    PubMed  CAS  Google Scholar 

  17. M. E. Davis, and M. E. Brewster. Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3:1023–1035 (2004) doi:10.1038/nrd1576.

    Article  PubMed  CAS  Google Scholar 

  18. A. Katsagonis, J. Atta-Politou, and M. A. Koupparis. HPLC method with UV detection for the determination of trans-resveratrol in plasma. J. Liq. Chromatogr. Relat. Technol. 28:1393–1405 (2005) doi:10.1081/JLC-200054884.

    Article  CAS  Google Scholar 

  19. H. S. Lin, C. S. Chean, Y. Y. Ng, S. Y. Chan, and P. C. Ho. 2-hydroxypropyl-beta-cyclodextrin increases aqueous solubility and photostability of all-trans-retinoic acid. J. Clin. Pharm. Ther. 25:265–269 (2000) doi:10.1046/j.1365-2710.2000.00285.x.

    Article  PubMed  CAS  Google Scholar 

  20. T. Higuchi, and K. A. Connors. Phase-solubility techniques. Advan. Anal. Chem. Instr. 4:117–212 (1965).

    CAS  Google Scholar 

  21. H. S. Lin, S. Y. Chan, K. S. Low, M. L. Shoon, and P. C. Ho. Kinetic study of a 2-hydroxypropyl-beta-cyclodextrin-based formulation of all-trans-retinoic acid in Sprague–Dawley rats after oral or intravenous administration. J. Pharm. Sci. 89:260–267 (2000) doi:10.1002/(SICI)1520-6017(200002)89:2<260::AID-JPS13>3.0.CO;2-Q.

    Article  PubMed  CAS  Google Scholar 

  22. H. S. Lin, W. W. Leong, J. A. Yang, P. Lee, S. Y. Chan, and P. C. Ho. Biopharmaceutics of 13-cis-retinoic acid (isotretinoin) formulated with modified beta-cyclodextrins. Int. J. Pharm. 341:238–245 (2007) doi:10.1016/j.ijpharm.2007.03.050.

    Article  PubMed  CAS  Google Scholar 

  23. H. S. Lin, A. B. Barua, J. A. Olson, K. S. Low, S. Y. Chan, M. L. Shoon, and P. C. Ho. Pharmacokinetic study of all-trans-retinoyl-beta-d-glucuronide in Sprague–Dawley rats after single and multiple intravenous administration(s). J. Pharm. Sci. 90:2023–2031 (2001) doi:10.1002/jps.1153.

    Article  PubMed  CAS  Google Scholar 

  24. K. Uekama, and M. Otagiri. Cyclodextrins in drug carrier systems. Crit. Rev. Ther. Drug Carr. Syst. 3:1–40 (1987).

    CAS  Google Scholar 

  25. C. F. Hung, Y. K. Lin, Z. R. Huang, and J. Y. Fang. Delivery of resveratrol, a red wine polyphenol, from solutions and hydrogels via the skin. Biol. Pharm. Bull. 31:955–962 (2008) doi:10.1248/bpb.31.955.

    Article  PubMed  CAS  Google Scholar 

  26. G. Piel, B. Evrard, T. Van Hees, and L. Delattre. Comparison of the IV pharmacokinetics in sheep of miconazole–cyclodextrin solutions and a micellar solution. Int. J. Pharm. 180:41–45 (1999) doi:10.1016/S0378-5173(98)00403-7.

    Article  PubMed  CAS  Google Scholar 

  27. V. J. Stella, V. M. Rao, E. A. Zannou, and V. V. Zia. Mechanisms of drug release from cyclodextrin complexes. Adv. Drug Deliv. Rev. 36:3–16 (1999) doi:10.1016/S0169-409X(98)00052-0.

    Article  PubMed  CAS  Google Scholar 

  28. Z. Lu, Y. Zhang, H. Liu, J. Yuan, Z. Zheng, and G. Zou. Transport of a cancer chemopreventive polyphenol, resveratrol: interaction with serum albumin and hemoglobin. J. Fluoresc. 17:580–587 (2007) doi:10.1007/s10895-007-0220-2.

    Article  PubMed  CAS  Google Scholar 

  29. O. H. Chan, and B. H. Stewart. Physicochemical and drug delivery considerations for oral drug bioavailability. Drug Discov. Today. 1:461–473 (1996) doi:10.1016/1359-6446(96)10039-8.

    Article  Google Scholar 

  30. C. De Santi, A. Pietrabissa, R. Spisni, F. Mosca, and G. M. Pacifici. Sulphation of resveratrol, a natural product present in grapes and wine, in the human liver and duodenum. Xenobiotica. 30:609–617 (2000) doi:10.1080/004982500406435.

    Article  PubMed  Google Scholar 

  31. W. Andlauer, J. Kolb, K. Siebert, and P. Furst. Assessment of resveratrol bioavailability in the perfused small intestine of the rat. Drugs Exp. Clin. Res. 26:47–55 (2000).

    PubMed  CAS  Google Scholar 

  32. G. Kuhnle, J. P. Spencer, G. Chowrimootoo, H. Schroeter, E. S. Debnam, S. K. Srai, C. Rice-Evans, and U. Hahn. Resveratrol is absorbed in the small intestine as resveratrol glucuronide. Biochem. Biophys. Res. Commun. 272:212–217 (2000) doi:10.1006/bbrc.2000.2750.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported through a National University of Singapore Academic Research Fund R148-050-068-101 and R148-050-068-133 (K. Ng) and NIH grant R21 CA 115269 (K. Ng).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka-Yun Ng.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11095-008-9701-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Lin, HS., Ho, P.C. et al. The Impact of Aqueous Solubility and Dose on the Pharmacokinetic Profiles of Resveratrol. Pharm Res 25, 2593–2600 (2008). https://doi.org/10.1007/s11095-008-9677-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9677-1

KEY WORDS

Navigation