Skip to main content

Advertisement

Log in

Pharmacological Modulation of Epithelial Mesenchymal Transition Caused by Angiotensin II. Role of ROCK and MAPK Pathways

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Tubulointerstitial fibrosis is a final common pathway to end-stage chronic kidney diseases, which are characterized by elevated renal angiotensin II (AngII) production. This peptide participates in kidney damage inducing fibrosis and epithelial mesenchymal transition (EMT). Our aim was to describe potential therapeutic targets in AngII-induced EMT, investigating the blockade of different intracellular pathways.

Methods

Studies were done in human tubular epithelial cells (HK2 cell line), evaluating changes in phenotype and EMT markers (Western blot and immunofluorescence).

Results

Treatment of HK2 cells with AngII for 3 days caused transdifferentiation into myofibroblast-like cells. The blockade of MAPKs cascade, using specific inhibitors of p38 (SB203580), extracellular signal-regulated kinase1/2 (ERK; PD98059) and Jun N-terminal kinase (JNK) (SP600125), diminished AngII-induced EMT. The blockade of RhoA/ROCK pathway, by transfection of a RhoA dominant-negative vector or by ROCK inhibition with Y-27632 or fasudil, inhibited EMT caused by AngII. Connective tissue growth factor (CTGF) is a downstream mediator of AngII-induced EMT. MAPKs and ROCK inhibitors blocked CTGF overexpression induced by AngII. HMG-CoA reductase inhibitors, although blocked AngII-mediated kinases activation, only partially diminished EMT and did not regulate CTGF.

Conclusions

These data suggest a potential therapeutic use of kinase inhibitors in renal fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AngII:

angiotensin II

AT:

angiotensin receptors

CTGF:

connective tissue growth factor

EMT:

epithelial mesenchymal transition

ERK:

extracellular signal-regulated kinase1/2

FBS:

fetal bovine serum

HK2:

human tubular epithelial cell line

HMG-CoA reductase:

3-hydroxy-3-methylglutaryl coenzyme A reductase

JNK:

Jun N-terminal

MAPK:

mitogen activated kinases

ROCK:

rho-kinase

TGF-β:

transforming growth factor-beta

VSMC:

vascular smooth muscle cells

References

  1. G. Wolf, and E. Ritz. Combination therapy with ACE inhibitors and angiotensin II receptor blockers to halt progression of chronic renal disease: pathophysiology and indications. Kidney Int. 67:799–812 (2005). doi:10.1111/j.1523-1755.2005.00145.x.

    Article  PubMed  CAS  Google Scholar 

  2. E. G. Neilson. Mechanisms of disease: fibroblasts—a new look at an old problem. Nat Clin Pract Nephrol. 2:101–118 (2006). doi:10.1038/ncpneph0093.

    Article  PubMed  CAS  Google Scholar 

  3. G. Wolf. Renal injury due to rennin–angiotensin–aldosterone system activation of the transforming growth factor-beta pathway. Kidney Int. 70:1914–1919 (2006).

    PubMed  CAS  Google Scholar 

  4. M. Ruiz-Ortega, M. Ruperez, V. Esteban, J. Rodriguez-Vita, E. Sanchez-Lopez, G. Carvajal, and J. Egido. Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dial. Transplant. 21:16–20 (2006). doi:10.1093/ndt/gfi265.

    Article  PubMed  CAS  Google Scholar 

  5. M. Ruiz-Ortega, J. Rodríguez-Vita, E. Sanchez-Lopez, G. Carvajal, and J. Egido. TGF-beta signaling in vascular fibrosis. Cardiovasc. Res. 74:196–206 (2007). doi:10.1016/j.cardiores.2007.02.008.

    Article  PubMed  CAS  Google Scholar 

  6. G. Carvajal-Gonzalez, J. Rodriguez-Vita, R. Rodrigues-Diez, E. Sanchez-Lopez, M. Ruperez, C. Cartier, V. Esteban, A. Ortiz, J Egido, S. Mezzano, and M. Ruiz-Ortega. Angiotensin II activates the Smad pathway during epithelial mesenchymal transdifferentiation. Kidney Int in press (2008) doi:10.1038/ki.2008.213.

  7. A. V. Bakin, C. Rinehart, A. K. Tomlinson, and C. L. Arteaga. p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J. Cell Sci. 115:3193–3206 (2002).

    PubMed  CAS  Google Scholar 

  8. V. Ellenrieder, S. F. Hendler, W. Boeck, T. Seufferlein, A. Menke, C. Ruhland, G. Adler, and T. M. Gress. Transforming growth factor beta1 treatment leads to an epithelial–mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res. 61:4222–4228 (2001).

    PubMed  CAS  Google Scholar 

  9. S. Patel, K. I. Takagi, J. Suzuki, A. Imaizumi, T. Kimura, R. M. Mason, T. Kamimura, and Z. Zhang. RhoGTPase activation is a key step in renal epithelial mesenchymal transdifferentiation. J. Am. Soc. Nephrol. 16:1977–1984 (2005). doi:10.1681/ASN.2004110943.

    Article  PubMed  CAS  Google Scholar 

  10. N. A. Bhowmick, M. Ghiassi, A. Bakin, M. Aakre, C. A. Lundquist, M. E. Engel, C. L. Arteaga, and H. L. Moses. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol. Biol. Cell. 12:27–36 (2001).

    PubMed  CAS  Google Scholar 

  11. J. K. Liao. Effects of statins on 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition beyond low-density lipoprotein cholesterol. Am. J. Cardiol. 96:24F–33F (2005). doi:10.1016/j.amjcard.2005.06.009.

    Article  PubMed  CAS  Google Scholar 

  12. J. Tuñón, J. L. Martín-Ventura, L. M. Blanco-Colio, and J. Egido. Mechanisms of action of statins in stroke. Expert Opin. Ther. Targets. 11(3):273–278 (2007). doi:10.1517/14728222.11.3.273.

    Article  PubMed  Google Scholar 

  13. M. Rupérez, R. Rodrigues-Díez, L. M. Blanco-Colio, E. Sánchez-López, J. Rodríguez-Vita, V. Esteban, G. Carvajal, J. J. Plaza, J. Egido, and M. Ruiz-Ortega. HMG-CoA reductase inhibitors decrease angiotensin II-induced vascular fibrosis: role of RhoA/ROCK and MAPK pathways. Hypertension. 50:377–383 (2007). doi:10.1161/HYPERTENSIONAHA.107.091264.

    Article  PubMed  Google Scholar 

  14. G. D’Amico. Statins and renal diseases: from primary prevention to renal replacement therapy. J. Am. Soc. Nephrol. 17(4 Suppl 2):S148–52 (2006). doi:10.1681/ASN.2005121341.

    Article  PubMed  CAS  Google Scholar 

  15. A. Gianella, E. Nobili, M. Abbate, C. Zoja, P. Gelosa, L. Mussoni, S. Bellosta, M. Canavesi, D. Rottoli, U. Guerrini, M. Brioschi, C. Banfi, E. Tremoli, G. Remuzzi, and L. Sironi. Rosuvastatin treatment prevents progressive kidney inflammation and fibrosis in stroke-prone rats. Am. J. Pathol. 170:1165–1177 (2007). doi:10.2353/ajpath.2007.060882.

    Article  PubMed  CAS  Google Scholar 

  16. S. Patel, R. M. Mason, J. Suzuki, A. Imaizumi, T. Kamimura, and Z. Zhang. Inhibitory effect of statins on renal epithelial-to-mesenchymal transition. Am. J. Nephrol. 26:381–387 (2006). doi:10.1159/000094780.

    Article  PubMed  CAS  Google Scholar 

  17. J. L. Wei, C. Y. Ma, Y. D. Zhang, and Y. Li. Synergistic effects of pravastatin and pioglitazone in renal tubular epithelial cells induced by transforming growth factor-beta1. Cell Biol. Int. 31:451–458 (2007). doi:10.1016/j.cellbi.2006.11.008.

    Article  PubMed  CAS  Google Scholar 

  18. L. Chen, B. C. Liu, X. L. Zhang, J. D. Zhang, H. Liu, and M. X. Li. Influence of connective tissue growth factor antisense oligonucleotide on angiotensin II-induced epithelial mesenchymal transition in HK2 cells. Acta Pharmacologica Sinica. 27:1029–1036 (2007). doi:10.1111/j.1745-7254.2006.00344.x.

    Article  Google Scholar 

  19. D. T. Dudley, L. Pang, S. J. Decker, A. J. Bridges, and A. R. Saltiel. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. U.S.A. 92:7686–7689 (1995). doi:10.1073/pnas.92.17.7686.

    Article  PubMed  CAS  Google Scholar 

  20. J. C. Lee, J. T. Laydon, P. C. McDonnell, T. F. Gallagher, S. Kumar, D. Green, D. McNulty, M. J. Blumenthal, J. R. Heys, S. W. Landvatter, J. E. Strickler, M. M. McLaughlin, I. R. Siemens, S. M. Fisher, G. P. Livi, J. R. White, J. L. Adams, and P. R. Young. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature. 372:739–746 (1994). doi:10.1038/372739a0.

    Article  PubMed  CAS  Google Scholar 

  21. C. Zhang, X. Meng, Z. Zhu, X. Yang, and A. Deng. Role of connective tissue growth factor in renal tubular epithelial-myofibroblast transdifferentiation and extracellular matrix accumulation in vitro. Life Sci. 75:367–379 (2004). doi:10.1016/j.lfs.2004.02.005.

    Article  PubMed  CAS  Google Scholar 

  22. E. Gore-Hyer, D. Shegogue, M. Markiewicz, S. Lo, D. Hazen-Martin, E. L. Greene, G. Grotendorst, and M. Trojanowska. TGF-beta and CTGF have overlapping and distinct fibrogenic effects on human renal cells. Am. J. Physiol. Renal Physiol. 283:F707–F716 (2002).

    PubMed  Google Scholar 

  23. K. S. Frazier, A. Paredes, P. Dube, and E. Styer. Connective tissue growth factor expression in the rat remnant kidney model and association with tubular epithelial cells undergoing transdifferentiation. Vet. Pathol. 37:328–335 (2000). doi:10.1354/vp.37-4-328.

    Article  PubMed  CAS  Google Scholar 

  24. M. Ruperez, M. Ruiz-Ortega, V. Esteban, O. Lorenzo, S. Mezzano, J. J. Plaza, and J. Egido. Angiotensin II increases connective tissue growth factor in the kidney. Am. J. Pathol. 163:1937–1947 (2003).

    PubMed  CAS  Google Scholar 

  25. N. A. Wahab, B. S. Weston, and R. M. Mason. Connective tissue growth factor CCN2 interacts with and activates the tyrosine kinase receptor TrkA. J. Am. Soc. Nephrol. 16:340–351 (2005). doi:10.1681/ASN.2003100905.

    Article  PubMed  CAS  Google Scholar 

  26. M. Rupérez, O. Lorenzo, L. M. Blanco-Colio, V. Esteban, J. Egido, and M. Ruiz-Ortega. Connective tissue growth factor is a mediator of angiotensin II-induced fibrosis. Circulation. 108:1499–1505 (2003). doi:10.1161/01.CIR.0000089129.51288.BA.

    Article  PubMed  Google Scholar 

  27. E. Sánchez-López, J. Rodriguez-Vita, C. Cartier, M. Rupérez, V. Esteban, G. Carvajal, R. Rodrigues-Díez, J. J. Plaza, J. Egido, and M. Ruiz-Ortega. Inhibitory effect of interleukin-1 on angiotensin II-induced connective tissue growth factor and type IV collagen production in cultured mesangial cells. Am. J. Physiol. Renal Physiol. 294:F149–60 (2008). doi:10.1152/ajprenal.00129.2007.

    Article  PubMed  Google Scholar 

  28. B. Liu, J. Yu, L. Taylor, X. Zhou, and P. Polgar. Microarray and phosphokinase screenings leading to studies on ERK and JNK regulation of connective tissue growth factor expression by angiotensin II 1a and bradykinin B2 receptors in Rat1 fibroblasts. J. Cell. Biochem. 97:1104–1120 (2006). doi:10.1002/jcb.20709.

    Article  PubMed  CAS  Google Scholar 

  29. A. Moustakas, and C. H. Heldin. Non-Smad TGF-beta signals. J. Cell Sci. 118:3573–3584 (2005). doi:10.1242/jcs.02554.

    Article  PubMed  CAS  Google Scholar 

  30. A. V. Bakin, C. Rinehart, A. K. Tomlinson, and C. L. Arteaga. p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J. Cell Sci. 115:3193–3206 (2002).

    PubMed  CAS  Google Scholar 

  31. V. Ellenrieder, S. F. Hendler, W. Boeck, T. Seufferlein, A. Menke, C. Ruhland, G. Adler, and T. M. Gress. Transforming growth factor beta1 treatment leads to an epithelial–mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res. 61:4222–4228 (2001).

    PubMed  CAS  Google Scholar 

  32. D. Y. Rhyu, Y. Yang, H. Ha, G. T. Lee, J. S. Song, S. T. Uh, and H. B. Lee. Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. J. Am. Soc. Nephrol. 16:667–675 (2005). doi:10.1681/ASN.2004050425.

    Article  PubMed  CAS  Google Scholar 

  33. T. Masaki, C. Stambe, P. A. Hill, J. Dowling, R. C. Atkins, and D. J. Nikolic-Paterson. Activation of the extracellular-signal regulated protein kinase pathway in human glomerulopathies. J. Am. Soc. Nephrol. 15:1835–1843 (2004). doi:10.1097/01.ASN.0000130623.66271.67.

    Article  PubMed  CAS  Google Scholar 

  34. C. Stambe, D. J. Nikolic-Paterson, P. A. Hill, J. Dowling, and R. C. Atkins. p38 Mitogen-activated protein kinase activation and cell localization in human glomerulonephritis: correlation with renal injury. J. Am. Soc. Nephrol. 15:326–336 (2004). doi:10.1097/01.ASN.0000108520.63445.E0.

    Article  PubMed  CAS  Google Scholar 

  35. C. Stambe, R. C. Atkins, P. A. Hill, and D. J. Nikolic-Paterson. Activation and cellular localization of the p38 and JNK MAPK pathways in rat crescentic glomerulonephritis. Kidney Int. 64:2121–2132 (2003). doi:10.1046/j.1523-1755.2003.00324.x.

    Article  PubMed  CAS  Google Scholar 

  36. R. S. Flanc, F. Y. Ma, G. H. Tesch, Y. Han, R. C. Atkins, B. L. Bennett, G. C. Friedman, J. H. Fan, and D. J. Nikolic-Paterson. A pathogenic role for JNK signaling in experimental anti-GBM glomerulonephritis. Kidney Int. 72:698–708 (2007). doi:10.1038/sj.ki.5002404.

    Article  PubMed  CAS  Google Scholar 

  37. Y. Wang, H. X. Ji, S. H. Xing, D. S. Pei, and Q. H. Guan. SP600125, a selective JNK inhibitor, protects ischemic renal injury via suppressing the extrinsic pathways of apoptosis. Life Sci. 80:2067–2075 (2007). doi:10.1016/j.lfs.2007.03.010.

    Article  PubMed  CAS  Google Scholar 

  38. F. Y. Ma, R. S. Flanc, G. H. Tesch, Y. Han, R. C. Atkins, B. L. Bennett, G. C. Friedman, J. H. Fan, and D. J. Nikolic-Paterson. A pathogenic role for c-Jun amino-terminal kinase signaling in renal fibrosis and tubular cell apoptosis. J. Am. Soc. Nephrol. 18:472–484 (2007). doi:10.1681/ASN.2006060604.

    Article  PubMed  CAS  Google Scholar 

  39. D. Bokemeyer, D. Panek, H. J. Kramer, M. Lindemann, M. Kitahara, P. Boor, D. Kerjaschki, J. M. Trzaskos, J. Floege, and T. Ostendorf. In vivo identification of the mitogen-activated protein kinase cascade as a central pathogenic pathway in experimental mesangioproliferative glomerulonephritis. J. Am .Soc. Nephrol. 13:1473–1480 (2002). doi:10.1097/01.ASN.0000017576.50319.AC.

    Article  PubMed  CAS  Google Scholar 

  40. A. Tojo, M. L. Onozato, N. Kobayashi, A. Goto, H. Matsuoka, and T. Fujita. Antioxidative effect of p38 mitogen-activated protein kinase inhibitor in the kidney of hypertensive rat. J. Hypertens. 23:165–174 (2005). doi:10.1097/00004872-200501000-00027.

    Article  PubMed  CAS  Google Scholar 

  41. S. S. Nerurkar, A. R. Olzinski, K. S. Frazier, R. C. Mirabile, S. P. O’Brien, J. Jing, D. Rajagopalan, T. L. Yue, and R. N. Willette. P38 MAPK inhibitors suppress biomarkers of hypertension end-organ damage, osteopontin and plasminogen activator inhibitor-1. Biomarkers. 12(1):87–112 (2007). doi:10.1080/13547500600944930.

    Article  PubMed  CAS  Google Scholar 

  42. M. H. de Borst, M. M. van Timmeren, V. S. Vaidya, R. A. de Boer, M. B. van Dalen, A. B. Kramer, T. A. Schuurs, J. V. Bonventre, G. Navis, and H. van Goor. Induction of kidney injury molecule-1 in homozygous Ren2 rats is attenuated by blockade of the rennin–angiotensin system or p38 MAP kinase. Am. J. Physiol. Renal Physiol. 292(1):F313–20 (2007). doi:10.1152/ajprenal.00180.2006.

    Article  PubMed  Google Scholar 

  43. M. H. de Borst, G. Navis, R. A. de Boer, S. Huitema, L. M. Vis, W. H. van Gilst, and H. van Goor. Specific MAP-kinase blockade protects against renal damage in homozygous TGR(mRen2)27 rats. Lab. Invest. 83(12):1761–70 (2003). doi:10.1097/01.LAB.0000101731.11015.F6.

    Article  PubMed  Google Scholar 

  44. J. K. Park, R. Fischer, R. Dechend, E. Shagdarsuren, A. Gapeljuk, M. Wellner, S. Meiners, P. Gratze, N. Al-Saadi, S. Feldt, A. Fiebeler, J. B. Madwed, A. Schirdewan, H. Haller, F. C. Luft, and D. N. Muller. p38 mitogen-activated protein kinase inhibition ameliorates angiotensin II-induced target organ damage. Hypertension. 49:481–489 (2007). doi:10.1161/01.HYP.0000256831.33459.ea.

    Article  PubMed  CAS  Google Scholar 

  45. J. Prakash, M. Sandovici, V. Saluja, M. Lacombe, R. Q. Schaapveld, M. H. de Borst, H. van Goor, R. H. Henning, J. H. Proost, F. Moolenaar, G. Këri, D. K. Meijer, K. Poelstra, and R. J. Kok. Intracellular delivery of the p38 mitogen-activated protein kinase inhibitor SB202190 [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole] in renal tubular cells: a novel strategy to treat renal fibrosis. Pharmacol. Exp. Ther. 319(1):8–19 (2006). doi:10.1124/jpet.106.106054.

    Article  CAS  Google Scholar 

  46. D. L. Lee, R. C. Webb, and L. Jin. Hypertension and RhoA/Rho-kinase signaling in the vasculature: highlights from the recent literature. Hypertension. 44:796–799 (2004). doi:10.1161/01.HYP.0000148303.98066.ab.

    Article  PubMed  CAS  Google Scholar 

  47. S. Patel, K. I. Takagi, J. Suzuki, A. Imaizumi, T. Kimura, R. M. Mason, T. Kamimura, and Z. Zhang. RhoGTPase activation is a key step in renal epithelial mesenchymal transdifferentiation. J. Am. Soc. Nephrol. 16:1977–1984 (2005). doi:10.1681/ASN.2004110943.

    Article  PubMed  CAS  Google Scholar 

  48. N. A. Bhowmick, M. Ghiassi, A. Bakin, M. Aakre, C. A. Lundquist, M. E. Engel, C. L. Arteaga, and H. L. Moses. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol. Biol. Cell. 12:27–36 (2001).

    PubMed  CAS  Google Scholar 

  49. B. Ozdamar, R. Bose, M. Barrios-Rodiles, H. R. Wang, Y. Zhang, and J. L. Wrana. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science. 307:1603–1609 (2005). doi:10.1126/science.1105718.

    Article  PubMed  CAS  Google Scholar 

  50. M. Ruperez, E. Sanchez-Lopez, L. M. Blanco-Colio, V. Esteban, J. Rodriguez-Vita, J. J. Plaza, J. Egido, and M. Ruiz-Ortega. The rho-kinase pathway regulates angiotensin II-induced renal damage. Kidney Int. 68:S39–S45 (2005). doi:10.1111/j.1523-1755.2005.09908.x.

    Article  Google Scholar 

  51. C. Kataoka, K. Egashira, S. Inoue, M. Takemoto, W. Ni, M. Koyanagi, S. Kitamoto, M. Usui, K. Kaibuchi, H. Shimokawa, and A. Takeshita. Important role of rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Hypertension. 39:245–250 (2002). doi:10.1161/hy0202.103271.

    Article  PubMed  CAS  Google Scholar 

  52. M. M. Fretz, J. Prakash, M. E. M. Dolman, M. Lacombe, M. de Borst, H. van Goor, K. Poelstra, and R. J. Kok. Renal delivery of kinase inhibitors ameliorates experimental inflammation and fibrosis. J. Am. Soc. Nephrol. 18:100A (2007).

    Google Scholar 

  53. B. Perbal. CCN proteins: multifunctional signalling regulators. Lancet. 363:62–64 (2004). doi:10.1016/S0140-6736(03)15172-0.

    Article  PubMed  CAS  Google Scholar 

  54. M. Guha, Z. G. Xu, D. Tung, L. Lanting, and R. Natarajan. Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1 and type 2 diabetes. FASEB J. 21:3355–3368 (2007). doi:10.1096/fj.06-6713com.

    Article  PubMed  CAS  Google Scholar 

  55. J. Heusinger-Ribeiro, M. Eberlein, N. A. Wahab, and M. Goppelt-Struebe. Expression of connective tissue growth factor in human renal fibroblasts: regulatory roles of RhoA and cAMP. J. Am. Soc. Nephrol. 12:1853–1851 (2001).

    PubMed  CAS  Google Scholar 

  56. D. Iwanciw, M. Rehm, M. Porst, and M. Goppelt-Struebe. Induction of connective tissue growth factor by angiotensin II: integration of signaling pathways. Arterioscler. Thromb. Vasc. Biol. 23:1782–1787 (2003). doi:10.1161/01.ATV.0000092913.60428.E6.

    Article  PubMed  CAS  Google Scholar 

  57. Z. Huang, L. Taylor, B. Liu, J. Yu, and P. Polgar. Modulation by bradykinin of angiotensin type 1 receptor-evoked RhoA activation of connective tissue growth factor expression in human lung fibroblasts. Am. J. Physiol. Lung Cell Mol. Physiol. 290:L1291–L1299 (2006). doi:10.1152/ajplung.00443.2005.

    Article  PubMed  CAS  Google Scholar 

  58. M. Buemi, F. Floccari, L. Nostro, S. Campo, C. Caccamo, A. Sturiale, C. Aloisi, M. S. Giacobbe, and N. Frisina. Statins in the prevention of cardiovascular events in patients with renal failure. Cardiovasc. Hematol. Disord. Drug Targets. 7:7–13 (2007).

    PubMed  CAS  Google Scholar 

  59. L. F. Fried, T. J. Orchard, and B. L. Kasiske. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int. 59:260–269 (2001). doi:10.1046/j.1523-1755.2001.00487.x.

    Article  PubMed  CAS  Google Scholar 

  60. S. C. Tang, J. C. Leung, L. Y. Chan, A. A. Eddy, and K. N. Lai. Angiotensin converting enzyme inhibitor but not angiotensin receptor blockade or statin ameliorates murine adriamycin nephropathy. Kidney Int. 73:288–299 (2007).

    Article  PubMed  Google Scholar 

  61. J. M. Vieira, E. Mantovani, L. T. Rodrigues, H. Dellê, I. L. Noronha, C. K. Fujihara, and R. Zatz. Simvastatin attenuates renal inflammation, tubular transdifferentiation and interstitial fibrosis in rats with unilateral ureteral obstruction. Nephrol. Dial. Transplant. 20:1582–1591 (2005). doi:10.1093/ndt/gfh859.

    Article  PubMed  Google Scholar 

  62. K. L. Watts, and M. A. Spiteri. Connective tissue growth factor expression and induction by transforming growth factor-beta is abrogated by simvastatin via a Rho signaling mechanism. Am. J. Physiol. Lung Cell Mol. Physiol. 287:L1323–L1332 (2004). doi:10.1152/ajplung.00447.2003.

    Article  PubMed  CAS  Google Scholar 

  63. M. Eberlein, J. Heusinger-Ribeiro, and M. Goppelt-Struebe. Rho-dependent inhibition of the induction of connective tissue growth factor (CTGF) by HMG CoA reductase inhibitors (statins). Br. J Pharmacol. 133:1172–1180 (2001). doi:10.1038/sj.bjp.0704173.

    Article  PubMed  CAS  Google Scholar 

  64. M. Goppelt-Struebe, A. Hahn, D. Iwanciw, M. Rehm, and B. Banas. Regulation of connective tissue growth factor (ccn2; ctgf) gene expression in human mesangial cells: modulation by HMG CoA reductase inhibitors (statins). Mol. Pathol. 54:176–179 (2001). doi:10.1136/mp.54.3.176.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work has been supported by grants from SAF 2005-03378 of the Ministerio de Educación y Ciencia, Sociedad Española de Nefrologia, Red temática de Investigación Renal, REDINREN (ISCIII-RETIC RD06/0016/0004) from the Instituto de Salud Carlos III from Ministerio de Sanidad y Consumo, EU project (DIALOK, LSHB-CT-2007-036644), PCI Iberoamerica and FONDECYT, Chile (1080083). E.S-L, J. R-V. are fellows of FIS. G.C. is a fellow of Fundación Carolina and Fundación Iñigo Alvarez de Toledo. We want to thank Ma Mar Gonzalez Garcia-Parreño and Sandra López León for their technical help. There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Ruiz-Ortega.

Additional information

Raquel Rodrigues-Díez and Gisselle Carvajal-González contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues-Díez, R., Carvajal-González, G., Sánchez-López, E. et al. Pharmacological Modulation of Epithelial Mesenchymal Transition Caused by Angiotensin II. Role of ROCK and MAPK Pathways. Pharm Res 25, 2447–2461 (2008). https://doi.org/10.1007/s11095-008-9636-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9636-x

Key words

Navigation