Skip to main content

Advertisement

Log in

Cyclooxygenase Inhibitors Down Regulate P-glycoprotein in Human Colorectal Caco-2 Cell Line

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Elevated expression of the ABC transporters P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP) seems to correlate with multidrug resistance of cancer cells. In this study we investigated the effect of COX inhibitors in modulating P-gp and BCRP expression and P-gp activity in Caco-2 cells.

Methods

mRNA and protein expression of MDR1 and BCRP were evaluated by real time PCR and western blot respectively. The activity of P-gp was measured by intracellular accumulation of rhodamine123 or 3H-Digoxin.

Results

The chronic exposure of Caco-2 to indomethacin heptyl ester (indo HE) (0.4 μM) or nimesulide (10 μM) (selective COX-2 inhibitors) and naproxen (6 μM) (non selective inhibitor COX-1/COX-2) significantly decreased the expression and activity of P-gp. In contrast, the acute treatment by nimesulide and naproxen did not modify these parameters while indo HE treatment (48–72 h) caused a protein decrease and a functional inhibition of P-gp. Unexpectedly, the short-term treatment with naproxen induced an important increase of BCRP expression, but this induction was lost after long-term treatment. No modification of BCRP expression was observed after indo HE or nimesulide treatment.

Conclusion

Our observations suggest a possible down regulation of P-gp by COX inhibitors, which may enhance the accumulation of chemotherapy agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. V. Lingand, and L. H. Thompson. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J. Cell. Physiol. 83:103–116 (1974).

    Article  Google Scholar 

  2. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA. 84:7735–7738 (1987).

    Article  PubMed  CAS  Google Scholar 

  3. M. F. Fromm. P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int. J. Clin. Pharmacol. Ther. 38:69–74 (2000).

    PubMed  CAS  Google Scholar 

  4. W. L. Smithand, and D. L. Dewitt. Prostaglandin endoperoxide H synthases-1 and -2. Adv. Immunol. 62:167–215 (1996).

    Article  Google Scholar 

  5. G. P. O'Neilland, and A. W. Ford-Hutchinson. Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Lett. 330:156–60 (1993).

    Google Scholar 

  6. C. C. Chan, S. Boyce, C. Brideau, A. W. Ford-Hutchinson, R. Gordon, D. Guay, R. G. Hill, C. S. Li, J. Mancini, M. Penneton et al. Pharmacology of a selective cyclooxygenase-2 inhibitor, L-745,337: a novel nonsteroidal anti-inflammatory agent with an ulcerogenic sparing effect in rat and nonhuman primate stomach. J. Pharmacol. Exp. Ther. 274:1531–1537 (1995).

    PubMed  CAS  Google Scholar 

  7. T. Tanioka, Y. Nakatani, T. Kobayashi, M. Tsujimoto, S. Oh-ishi, M. Murakami, and I. Kudo. Regulation of cytosolic prostaglandin E2 synthase by 90-kDa heat shock protein. Biochem. Biophys. Res. Commun. 303:1018–1023 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. R. N. Dubois, S. B. Abramson, L. Crofford, R. A. Gupta, L. S. Simon, L. B. Van De Putte, and P. E. Lipsky. Cyclooxygenase in biology and disease. FASEB J. 12:1063–1073 (1998).

    PubMed  CAS  Google Scholar 

  9. C. E. Trebino, J. L. Stock, C. P. Gibbons, B. M. Naiman, T. S. Wachtmann, J. P. Umland, K. Pandher, J. M. Lapointe, S. Saha, M. L. Roach, D. Carter, N. A. Thomas, B. A. Durtschi, J. D. McNeish, J. E. Hambor, P. J. Jakobsson, T. J. Carty, J. R. Perez, and L. P. Audoly. Impaired inflammatory and pain responses in mice lacking an inducible prostaglandin E synthase. Proc. Natl. Acad. Sci. USA. 100:9044–9049 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. C. Patrono, P. Patrignani, and L. A. Garcia Rodriguez. Cyclooxygenase-selective inhibition of prostanoid formation: transducing biochemical selectivity into clinical read-outs. J. Clin. Invest. 108:7–13 (2001).

    PubMed  CAS  Google Scholar 

  11. J. A. Mitchelland, and T. D. Warner. Cyclo-oxygenase-2: pharmacology, physiology, biochemistry and relevance to NSAID therapy. Br. J. Pharmacol. 128:1121–32 (1999).

    Article  Google Scholar 

  12. I. I. Singer II, D. W. Kawka, S. Schloemann, T. Tessner, T. Riehl, and W. F. Stenson. Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology 115:297–306 (1998).

  13. C. E. Eberhart, R. J. Coffey, A. Radhika, F. M. Giardiello, S. Ferrenbach, and R. N. DuBois. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 107:1183–8 (1994).

    PubMed  CAS  Google Scholar 

  14. H. Sheng, J. Shao, J. D. Morrow, R. D. Beauchamp, and R. N. DuBois. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res. 58:362–366 (1998).

    PubMed  CAS  Google Scholar 

  15. M. Tsujii, S. Kawano, S. Tsuji, H. Sawaoka, M. Hori, and R. N. DuBois. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 93:705–716 (1998).

    Article  PubMed  CAS  Google Scholar 

  16. N. Arber, C. J. Eagle, J. Spicak, I. Racz, P. Dite, J. Hajer, M. Zavoral, M. J. Lechuga, P. Gerletti, J. Tang, R. B. Rosenstein, K. Macdonald, P. Bhadra, R. Fowler, J. Wittes, A. G. Zauber, S. D. Solomon, and B. Levin. Celecoxib for the prevention of colorectal adenomatous polyps. N. Engl. J. Med. 355:885–95 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. Y. Goldberg, Nassif, II, A. Pittas, L. L. Tsai, B. D. Dynlacht, B. Rigas, and S. J. Shiff. The anti-proliferative effect of sulindac and sulindac sulfide on HT-29 colon cancer cells: alterations in tumor suppressor and cell cycle-regulatory proteins. Oncogene 12:893–901 (1996).

  18. J. Shao, T. Fujiwara, Y. Kadowaki, T. Fukazawa, T. Waku, T. Itoshima, T. Yamatsuji, M. Nishizaki, J. A. Roth, and N. Tanaka. Overexpression of the wild-type p53 gene inhibits NF-kappaB activity and synergizes with aspirin to induce apoptosis in human colon cancer cells. Oncogene. 19:726–36 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. S. Hashitani, M. Urade, N. Nishimura, T. Maeda, K. Takaoka, K. Noguchi, and K. Sakurai. Apoptosis induction and enhancement of cytotoxicity of anticancer drugs by celecoxib, a selective cyclooxygenase-2 inhibitor, in human head and neck carcinoma cell lines. Int. J. Oncol. 23:665–672 (2003).

    PubMed  CAS  Google Scholar 

  20. J. L. Masferrer, K. M. Leahy, A. T. Koki, B. S. Zweifel, S. L. Settle, B. M. Woerner, D. A. Edwards, A. G. Flickinger, R. J. Moore, and K. Seibert. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 60:1306–1311 (2000).

    PubMed  CAS  Google Scholar 

  21. M. K. Jones, H. Wang, B. M. Peskar, E. Levin, R. M. Itani, I. J. Sarfeh, and A. S. Tarnawski. Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: insight into mechanisms and implications for cancer growth and ulcer healing. Nat. Med. 5:1418–1423 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. V. A. Patel, M. J. Dunn, and A. Sorokin. Regulation of MDR-1 (P-glycoprotein) by cyclooxygenase-2. J. Biol. Chem. 277:38915–38920 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. M. C. Zatelli, A. Luchin, D. Piccin, F. Tagliati, A. Bottoni, C. Vignali, M. Bondanelli, and E. C. degli Uberti. Cyclooxygenase-2 inhibitors reverse chemoresistance phenotype in medullary thyroid carcinoma by a permeability glycoprotein-mediated mechanism. J. Clin. Endocrinol. Metab. 90:5754–5760 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. A. S. Kalgutkar, A. B. Marnett, B. C. Crews, R. P. Remmel, and L. J. Marnett. Ester and amide derivatives of the nonsteroidal antiinflammatory drug, indomethacin, as selective cyclooxygenase-2 inhibitors. J. Med. Chem. 43:2860–2870 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. T. Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65:55–63 (1983).

    Article  PubMed  CAS  Google Scholar 

  26. M. Thamotharan, S. Z. Bawani, X. Zhou, and S. A. Adibi. Hormonal regulation of oligopeptide transporter pept-1 in a human intestinal cell line. Am. J. Physiol. 276:C821–C826 (1999).

    PubMed  CAS  Google Scholar 

  27. S. Siissalo, L. Laitinen, M. Koljonen, K. S. Vellonen, H. Kortejarvi, A. Urtti, J. Hirvonen, and A. M. Kaukonen. Effect of cell differentiation and passage number on the expression of efflux proteins in wild type and vinblastine-induced Caco-2 cell lines. Eur. J. Pharm. Biopharm. 67:548–54 (2007).

    Article  PubMed  CAS  Google Scholar 

  28. A. Pfrunder, H. Gutmann, C. Beglinger, and J. Drewe. Gene expression of CYP3A4, ABC-transporters (MDR1 and MRP1-MRP5) and hPXR in three different human colon carcinoma cell lines. J. Pharm. Pharmacol. 55:59–66 (2003).

    Article  PubMed  CAS  Google Scholar 

  29. A. Geick, M. Eichelbaum, and O. Burk. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J. Biol. Chem. 276:14581–14587 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. D. Ratnasinghe, P. J. Daschner, M. R. Anver, B. H. Kasprzak, P. R. Taylor, G. C. Yeh, and J. A. Tangrea. Cyclooxygenase-2, P-glycoprotein-170 and drug resistance; is chemoprevention against multidrug resistance possible? Anticancer Res. 21:2141–2147 (2001).

    PubMed  CAS  Google Scholar 

  31. D. Kessel, W. T. Beck, D. Kukuruga, and V. Schulz. Characterization of multidrug resistance by fluorescent dyes. Cancer Res. 51:4665–4670 (1991).

    PubMed  CAS  Google Scholar 

  32. M. Fontaine, W. F. Elmquist, and D. W. Miller. Use of rhodamine 123 to examine the functional activity of P-glycoprotein in primary cultured brain microvessel endothelial cell monolayers. Life Sci. 59:1521–1531 (1996).

    Article  PubMed  CAS  Google Scholar 

  33. Y. Honjo, C. A. Hrycyna, Q. W. Yan, W. Y. Medina-Perez, R. W. Robey, A. van de Laar, T. Litman, M. Dean, and S. E. Bates. Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res. 61:6635–6639 (2001).

    PubMed  CAS  Google Scholar 

  34. J. D. Allen, S. C. Jackson, and A. H. Schinkel. A mutation hot spot in the Bcrp1 (Abcg2) multidrug transporter in mouse cell lines selected for Doxorubicin resistance. Cancer Res. 62:2294–2299 (2002).

    PubMed  CAS  Google Scholar 

  35. O. Alqawi, S. Bates, and E. Georges. Arginine482 to threonine mutation in the breast cancer resistance protein ABCG2 inhibits rhodamine 123 transport while increasing binding. Biochem. J. 382:711–716 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. R. W. Robey, Y. Honjo, A. van de Laar, K. Miyake, J. T. Regis, T. Litman, and S. E. Bates. A functional assay for detection of the mitoxantrone resistance protein, MXR (ABCG2). Biochim. Biophys. Acta. 1512:171–182 (2001).

    Article  PubMed  CAS  Google Scholar 

  37. K. E. Pedersen, A. Dorph-Pedersen, S. Hvidt, N. A. Klitgaard, and K. K. Pedersen. The long-term effect of verapamil on plasma digoxin concentration and renal digoxin clearance in healthy subjects. Eur. J. Clin. Pharmacol. 22:123–127 (1982).

    Article  PubMed  CAS  Google Scholar 

  38. U. Puhlmann, C. Ziemann, G. Ruedell, H. Vorwerk, D. Schaefer, C. Langebrake, P. Schuermann, U. Creutzig, and D. Reinhardt. Impact of the cyclooxygenase system on doxorubicin-induced functional multidrug resistance 1 overexpression and doxorubicin sensitivity in acute myeloid leukemic HL-60 cells. J. Pharmacol. Exp. Ther. 312:346–354 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. I. Tegeder, J. Pfeilschifter, and G. Geisslinger. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J. 15:2057–2072 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. M. Bentires-Alj, V. Barbu, M. Fillet, A. Chariot, B. Relic, N. Jacobs, J. Gielen, M. P. Merville, and V. Bours. NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene. 22:90–97 (2003).

    Article  PubMed  CAS  Google Scholar 

  41. M. L. Smith, G. Hawcroft, and M. A. Hull. The effect of non-steroidal anti-inflammatory drugs on human colorectal cancer cells: evidence of different mechanisms of action. Eur. J. Cancer. 36:664–74 (2000).

    Article  PubMed  CAS  Google Scholar 

  42. M. Goto, S. Masuda, H. Saito, and K. Inui. Decreased expression of P-glycoprotein during differentiation in the human intestinal cell line Caco-2. Biochem. Pharmacol. 66:163–170 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from the university of Tishrin, Lattakia, Syrian Arabic republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afraa Zrieki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zrieki, A., Farinotti, R. & Buyse, M. Cyclooxygenase Inhibitors Down Regulate P-glycoprotein in Human Colorectal Caco-2 Cell Line. Pharm Res 25, 1991–2001 (2008). https://doi.org/10.1007/s11095-008-9596-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9596-1

KEY WORDS

Navigation