Skip to main content

Advertisement

Log in

A Novel Design of Artificial Membrane for Improving the PAMPA Model

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Since the first demonstration of PAMPA, the artificial membrane has been traditionally prepared by impregnating a porous filter with a solution of lipid mixture. While the lipid solution-based method is simple and seems to provide good predictability for many compounds, it is challenged by several shortcomings including reproducibility, stability, mass retention and the incorrect prediction of a group of highly permeable compounds including caffeine and antipyrine. Here we present the validation of a novel artificial membrane formed by constructing a lipid/oil/lipid tri-layer in the porous filter.

Methods

Permeability values obtained from traditional and new artificial membrane were compared for their correlation with Caco-2 and human absorption values. Mass retention, stability and organic solvent compatibility of the new artificial membrane were studied.

Results

The new artificial membrane correctly predicts the permeability of the traditionally under-predicted compounds and improves the correlation with Caco-2 and human absorption values. Furthermore, the new artificial membrane reduces the mass retention of compounds that are highly retained by the traditional artificial membrane. The new artificial membrane is also found to be robust enough to sustain long term storage and has good compatibility with organic solvents.

Conclusions

The new artificial membrane provides an improved PAMPA model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Artursson, and R. Borchardt. Intestinal drug absorption and metabolism in cell cultures: Caco-2 and beyond. Pharm. Res 14:1655–1658 (1997).

    Article  PubMed  CAS  Google Scholar 

  2. J. Alsenz, and E. Haenel. Development of a 7-day, 96 well Caco-2 permeability assay with high throughput direct UV compound analysis. Pharm. Res 20:1961–1969 (2003).

    Article  PubMed  CAS  Google Scholar 

  3. P. V. Balimane, and S. Chong. Cell culture-based models for intestinal permeability: a critique. Drug Discov. Today 10:335–343 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. M. Kansy, F. Senner, and K. Gubernator. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J. Med. Chem 41:1007–1010 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. F. Wohnsland, and B. Faller. High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. J. Med. Chem 44:923–930 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. K. Sugano, Y. Nabuchi, M. Machida, and Y. Aso. Prediction of human intestinal permeability using artificial membrane permeability. Int. J. Pharm 257:245–251 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. A. Avdeef, P. Artursson, S. Neuhoff, L. Lazorova, J. Grasjo, and S. Tavelin. Caco-2 permeability of weakly basic drugs predicted with the Double-Sink PAMPA pK a flux method. Eur. J. Pharm. Sci 24:333–349 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. P. R. Seo, Z. S. Teksin, J. P. Y. Kao, and J. E. Polli. Lipid composition effect on permeability across PAMPA. Eur. J. Pharm. Sci 24:259–268 (2006).

    Article  Google Scholar 

  9. L. Di, E. H. Kerns, K. Fan, O. J. McConnell, and G. T. Carter. High throughput artificial membrane permeability assay for blood-brain barrier. Eur. J. Med. Chem 38:223–232 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. J. A. Ruell, A. Avdeef, C. Du, K. Tsinman. A simple PAMPA filter for passively absorbed compounds. Poster, ACS National Meeting, Boston, August 2002. http://www.pion-inc.com/images/simplePAMPAfilter1.pdf. Cited September 27, 2007.

  11. J. A. Ruell, A. Avdeef, K. Tsinman, D. Voloboy, C. Berger, P. Nielsen. Double-SinkTM PAMPA: the high throughput gastrointestinal absorption model for 21st century drug discovery. Poster, Jan 2003. http://www.pion-inc.com/images/Double-Sink_PAMPA_1.pdf. Cited September 27, 2007.

  12. P. V. Balimane, E. Pace, S. Chong, M. Zhu, M. Jemal, and C. K. Van Pelt. A novel high-throughput automated chip-based nanoelectrospray tandem mass spectrometric method for PAMPA sample analysis. J. Pharm. Biomed. Anal 39:8–16 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. H. Liu, C. Sabus, G. T. Carter, C. Du, A. Avdeef, and M. Tischler. In vitro permeability of poorly aqueous soluble compounds using different solubilizers in the PAMPA assay with liquid chromatography/mass spectrometry detection. Pharm. Res 20:1820–1826 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. A. Avdeef, M. Strafford, E. Block, M. Balogh, W. Chambliss, and I. Khan. Drug absorption in vitro model: filter-immobilized artificial membranes 2. Studies of the permeability properties of lactones in Piper methysticum Forst. Eur. J. Pharm. Sci 14:271–280 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. A. Avdeef. In Absorption and Drug Development. Wiley, New York, 2003, pp. 116–246.

    Book  Google Scholar 

  16. M. Kansy, A. Avdeef, and H. Fischer. Advances in screening for membrane permeability: high-resolution PAMPA for medicinal chemists. Drug Discov. Today/Technol 1:349–355 (2004).

    Article  CAS  Google Scholar 

  17. A. Avdeef, and O. Tsinman. PAMPA—a drug absorption in vitro model 13. Chemical selectivity due to membrane hydrogen bonding: In combo comparisons of HDM-, DOPC-, and DS-PAMPA models. Eur. J. Pharm. Sci 28:43–50 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. P. Mueller, D. O. Rudin, H. T. Tien, and W. C. Westcott. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194:979–980 (1962).

    Article  PubMed  CAS  Google Scholar 

  19. P. V. Balimane, Y. Han, and S. Chong. Current industrial practices of assessing permeability and P-glycoprotein interaction. AAPS J 8:E1–E13 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. A. M. Marino, M. Yarde, H. Patel, S. Chong, and P. V. Balimane. Validation of the 96-well Caco-2 cell culture model for high throughput permeability assessment of discovery compounds. Int. J. Pharm 297:253–241 (2005).

    Google Scholar 

  21. A. Avdeef, S. Bendels, L. Di, B. Faller, M. Kansy, K. Sugano, and Y. Yamauchi. PAMPA—critical factors for better predictions of absorption. J. Pharm. Sci 96:2893–2909 (2007).

    Article  PubMed  CAS  Google Scholar 

  22. G. Corti, F. Maestrelli, M. Cirri, N. Zerrouk, and P. Mura. Development and evaluation of an in vitro method for prediction of human drug absorption. II. Demonstration of the method suitability. Eur. J. Pharm. Sci 27:354–362 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Murawski, A., Patel, K. et al. A Novel Design of Artificial Membrane for Improving the PAMPA Model. Pharm Res 25, 1511–1520 (2008). https://doi.org/10.1007/s11095-007-9517-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9517-8

Key words

Navigation