Skip to main content
Log in

Characterization of the Physiological Spaces and Distribution of Tolbutamide in the Perfused Rat Pancreas

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

To set up and validate a viable perfused rat pancreas model suitable for pharmacokinetic studies.

Materials and methods

We setup and conducted multiple indicator dilution studies in the single pass perfused rat pancreas. The distribution of the reference markers [99mTc]-red blood cells (RBC), [14C]-sucrose, and [3H]-water, and tolbutamide were analysed using both non-parametric and parametric methods.

Results

The perfusion preparation was observed to be viable by oxygen consumption, outflow perfusate pH, lactate release and insulin release in response to glucose. Parametric analysis of the outflow profiles suggested that the transport of water and tolbutamide from the vascular space was permeability limited. Parametric and nonparametric estimates of V d for RBC and sucrose were similar and were 0.14 ± 0.01, 0.15 ± 0.005 and 0.35 ± 0.01 ml/g. The parametric estimate for water, 1.04 ± 0.05 ml/g was greater than the nonparametric estimate, 0.89 ± 0.02 ml/g. The multiple indicator dilution method V d of tolbutamide of 0.75 ± 0.08 ml/g was similar to the reported value of 0.73 ± 0.04 ml/g estimated by tissue partitioning studies.

Conclusions

A viable single pass pancreas perfusion model was established and applied to define distribution spaces of reference markers and the distribution kinetics of tolbutamide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

MOPS:

3-[N-morpholino]propane-sulphonic acid

RBC:

red blood cells

References

  1. M. Ratschko, T. Fenner, and P. G. Lankisch. The role of antibiotic prophylaxis in the treatment of acute pancreatitis. Gastroenterol. Clin. North Am. 28:641–659, ix–x (1999).

    Article  PubMed  CAS  Google Scholar 

  2. M. Arakawa, K. Okumura, and R. Hori. Tissue distribution and metabolism of drugs. V. Effect of secretin and pancreozymin on drug transport in rabbit pancreas. J. Pharm. Sci. 69:27–30 (1980).

    Article  PubMed  CAS  Google Scholar 

  3. R. Hori, M. Arakawa, and K. Okumura. Tissue distribution and metabolism of drugs. II. Accumulation and permeation of drugs in the rabbit pancreas. Chem. Pharm. Bull. 26:1135–1140 (1978).

    PubMed  CAS  Google Scholar 

  4. Y. Ouyang, and E. J. Lien. Quantitative analysis of blood–testis barrier and pancreatic permeation as functions of physiochemical parameters. Acta Pharm Jugosl. 34:201–205 (1984).

    Google Scholar 

  5. G. E. Mann, M. Munoz, and S. Peran. Fasting and refeeding modulate neutral amino acid transport activity in the basolateral membrane of the rat exocrine pancreatic epithelium: fasting-induced insulin insensitivity. Biochim. Biophys. Acta. 862:119–126 (1986).

    Article  PubMed  CAS  Google Scholar 

  6. G. E. Mann, and M. Munoz. Adaption of pancreatic amion acid transport in rats after treatment with the synthetic protease inhibitor camostat mesilate. Pancreas. 4:601–605 (1989).

    Article  PubMed  CAS  Google Scholar 

  7. G. E. Mann, and P. S. R. Norman. Regulatory effects of insulin and experimental diabetes on neutral amino acid transport in the perfused rat exocrine pancreas. Biochim. Biophys. Acta. 778:618–622 (1984).

    Article  PubMed  CAS  Google Scholar 

  8. M. Munoz, J. H. Sweiry, and G. E. Mann. Insulin stimulates cationic amino acid transport activity in the isolated perfused rat pancreas. Exp. Physiol. 80:745–753 (1995).

    PubMed  CAS  Google Scholar 

  9. P. R. Kvietys, M. A. Perry, and D. N. Granger. Permeability of pancreatic capillaries to small molecules. Am. J. Physiol. 245:G519–G524 (1983).

    PubMed  CAS  Google Scholar 

  10. M. Munoz, P. W. Emery, S. Peran, and G. E. Mann. Dietary regulation of amino acid transport activity in the exocrine pancreatic epithelium. Biochim. Biophys. Acta. 945:273–280 (1988).

    Article  PubMed  CAS  Google Scholar 

  11. J. H. Sweiry, M. Munoz, and G. E. Mann. Cis-inhibition and trans-stimulation of cationic amino acid transport in the perfused rat pancreas. Am. J. Physiol. 261:C506–C514 (1991).

    PubMed  CAS  Google Scholar 

  12. G. E. Mann, and S. Peran. Basolateral amino acid transport systems in the perfused exocrine pancreas: sodium-dependency and kinetic interactions between influx and efflux mechanisms. Biochim. Biophys. Acta. 858:263–274 (1986).

    Article  PubMed  CAS  Google Scholar 

  13. D. Y. Hung, G. D. Mellick, Y. G. Anissimov, M. Weiss, and M. S. Roberts. Hepatic structure–pharmacokinetic relationships: the hepatic disposition and metabolite kinetics of a homologous series of O-acyl derivatives of salicylic acid. Br. J. Pharmacol. 124:1475–1483 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. J. B. Bassingthwaighte, and C. A. Goresky. Modeling in the analysis of solute and water exchange in the microvasculature, Handbook of Physiology, vol. section 2, vol. 4, American Physiological Society, Bethseda, 1984, pp. 549–626.

    Google Scholar 

  15. Z. Y. Wu, S. E. Cross, and M. S. Roberts. Influence of physicochemical parameters and perfusate flow rate on the distribution of solutes in the isolated perfused rat hindlimb determined by the impulse–response technique. J. Pharm. Sci. 84:1020–1027 (1995).

    Article  PubMed  CAS  Google Scholar 

  16. K. A. Foster, G. D. Mellick, M. Weiss, and M. S. Roberts. An isolated in-situ rat head perfusion model for pharmacokinetic studies. Pharm. Res. 17:127–134 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. W. J. Malaisse, V. Leclercq Meyer, and F. Malaisse Lagae. Methods for the measurement of insulin secretion. In J. C. Hutton, and K. Siddle (eds.), Peptide Hormone Secretion: A Practical Approach, IRL, Oxford, 1990, pp. 211–231.

    Google Scholar 

  18. P. Dejours. Principles of Comparative Respiratory Physiology, Elsevier, Amsterdam, 1981.

    Google Scholar 

  19. F. P. Chinard, G. H. Vosburgh, and T. Enns. Transcapillary exchange of water and other substances in certain organs of the dog. Am. J. Physiol. 183:221–234 (1955).

    PubMed  CAS  Google Scholar 

  20. C. A. Goresky. A linear method for determining liver sinusoidal and extravascular volumes. Am. J. Physiol. 204:626–640 (1963).

    PubMed  CAS  Google Scholar 

  21. C. A. Goresky. The Nature of Transcapillary Exchange in the Liver. Canad. Med. Ass. J. 92:517–522 (1965).

    PubMed  CAS  Google Scholar 

  22. C. A. Goresky, W. H. Ziegler, and G. G. Bach. Capillary exchange modeling. Barrier-limited and flow-limited distribution. Circ. Res. 27:739–764 (1970).

    PubMed  CAS  Google Scholar 

  23. K. S. Pang, F. Barker, 3rd, A. J. Schwab, and C. A. Goresky. Demonstration of rapid entry and a cellular binding space for salicylamide in perfused rat liver: a multiple indicator dilution study. J. Pharmacol. Exp. Ther. 270:285–295 (1994).

    PubMed  CAS  Google Scholar 

  24. D. Y. Hung, P. Chang, K. Cheung, C. Winterford, and M. S. Roberts. Quantitative evaluation of altered hepatic spaces and membrane transport in fibrotic rat liver. Hepatology. 36:1180–1189 (2002).

    Article  PubMed  Google Scholar 

  25. M. Weiss, and M. S. Roberts. Tissue distribution kinetics as determinant of transit time dispersion of drugs in organs: application of a stochastic model to the rat hindlimb. J. Pharmacokinet. Biopharm. 24:173–196 (1996).

    Article  PubMed  CAS  Google Scholar 

  26. M. Rowland and T. N. Tozer. Clinical Pharmacokinetics: Concepts and Applications, Williams and Wilkins, Baltimore, 1995.

    Google Scholar 

  27. L. Jansson, and C. Hellerstrom. Stimulation by glucose of the blood flow to the pancreatic islets of the rat. Diabetologia. 25:45–50 (1983).

    Article  PubMed  CAS  Google Scholar 

  28. M. Iwase, Y. Uchizono, U. Nakamura, S. Nohara, and M. Iida. Effect of exogenous cholecystokinin on islet blood flow in anesthetized rats. Regul. Pept. 116:87–93 (2003).

    Article  PubMed  CAS  Google Scholar 

  29. G. E. Mann, P. S. R. Norman, Y. Habara, M. Munoz, and S. Peran. Regulation of basolateral amino acid transport activity in the exocrine pancreas by insulin, acetylcholine, cholecystokinin and experimental diabetes. In D. L. Yudilevichand G. E. Mann (eds.), Carrier Mediated Transport of Solutes from Blood to Tissue Longman, London, 1985, pp. 77–98.

    Google Scholar 

  30. J. H. Sweiryand G. E. Mann. Pancreatic microvascular permeability in caerulein-induced acute pancreatitis. Am. J. Physiol. 261:685–692 (1991).

    Google Scholar 

  31. K. Cheung, P. E. Hickman, J. M. Potter, N. I. Walker, M. Jericho, R. Haslam, and M. S. Roberts. An optimized model for rat liver perfusion studies. J. Surg. Res. 66:81–89 (1996).

    Article  PubMed  CAS  Google Scholar 

  32. S. Lenzen. Insulin secretion by isolated perfused rat and mouse pancreas. Am. J. Physiol. 236:E391–E400 (1979).

    PubMed  CAS  Google Scholar 

  33. S. Lenzen, H. G. Joost, and A. Hasselblatt. The inhibition of insulin secretion from the perfused rat pancreas after thyroxine treatment. Diabetologia. 12:495–500 (1976).

    Article  PubMed  CAS  Google Scholar 

  34. L. Jansson. Flow distribution between the endocrine and exocrine parts of the isolated rat pancreas during perfusion in vitro with different glucose concentrations. Acta Physiol. Scand. 126:533–538 (1986).

    Article  PubMed  CAS  Google Scholar 

  35. C. F. Gotfredsen. Dynamics of sulfonylurea-induced insulin release from the isolated perfused rat pancreas. Diabetologia. 12:339–342 (1976).

    Article  PubMed  CAS  Google Scholar 

  36. S. Lenzen. The immediate insulin secretory response of the isolated perfused rat pancreas to tolbutamide and glucose. FEBS Lett. 49:407–408 (1975).

    Article  PubMed  CAS  Google Scholar 

  37. C. M. Buchanan, A. R. Phillips, and G. J. Cooper. Preptin derived from proinsulin-like growth factor II (proIGF-II) is secreted from pancreatic islet beta-cells and enhances insulin secretion. Biochem. J. 360:431–439 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. Z. Y. Wu, L. P. Rivory, and M. S. Roberts. Physiological pharmacokinetics of solutes in the isolated perfused rat hindlimb: characterization of the physiology with changing perfusate flow, protein content, and temperature using statistical moment analysis. J. Pharmacokinet. Biopharm. 21:653–688 (1993).

    Article  PubMed  CAS  Google Scholar 

  39. R. Kawai, M. Lemaire, J. Steiner, A. Bruelisauer, W. Niederberger, and M. Rowland. Physiologically Based Pharmacokinetic Study on a Cyclosporin Derivative, SDZ IMM 125. J. Pharmacokinet. Biopharm. 22:327–365 (1994).

    Article  PubMed  CAS  Google Scholar 

  40. L. Schneyer and C. Schneyer. Electrolyte and inulin spaces of rat slivary glands and pancreas. Am. J. Physiol. 199:649–652 (1960).

    PubMed  CAS  Google Scholar 

  41. A. C. Heatherington and M. Rowland. Estimation of reference spaces in the perfused rat hindlimb. Eur. J. Pharm. Sci. 2:261–270 (1994).

    Article  CAS  Google Scholar 

  42. K. A. Foster. Pharmacokinetic Studies in the Head, University of Queensland, Brisbane, 2000.

    Google Scholar 

  43. M. Weiss, L. N. Ballinger, and M. S. Roberts. Kinetic analysis of vascular marker distribution in perfused rat livers after regeneration following partial hepatectomy. J. Hepatol. 29:476–481 (1998).

    Article  PubMed  CAS  Google Scholar 

  44. M. Weiss, O. Kuhlmann, D. Y. Hung, and M. S. Roberts. Cytoplasmic binding and disposition kinetics of diclofenac in the isolated perfused rat liver. Br. J. Pharmacol. 130:1331–1338 (2000).

    Article  PubMed  CAS  Google Scholar 

  45. D. Y. Hung, P. Chang, K. Cheung, B. McWhinney, P. P. Masci, M. Weiss, and M. S. Roberts. Cationic drug pharmacokinetics in diseased livers determined by fibrosis index, hepatic protein content, microsomal activity, and nature of drug. J. Pharmacol. Exp. Ther. 301:1079–1087 (2002).

    Google Scholar 

  46. D. Y. Hung, G. A. Siebert, P. Chang, Y. G. Anissimov, and M. S. Roberts. Disposition kinetics of propranolol isomers in the perfused rat liver. J. Pharmacol. Exp. Ther. 311:822–829 (2004).

    Google Scholar 

  47. D. Y. Hung, P. Chang, M. Weiss, and M. S. Roberts. Structure–hepatic disposition relationships for cationic drugs in isolated perfused rat livers: transmembrane exchange and cytoplasmic binding process. J. Pharmacol. Exp. Ther. 297:780–789 (2001).

    PubMed  CAS  Google Scholar 

  48. D. Y. Hung, G. A. Siebert, P. Chang, M. W. Whitehouse, L. Fletcher, D. H. G. Crawford, and M. S. Roberts. Hepatic pharmacokinetics of propranolol in rats with adjuvant-induced systemic inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 290:G343–G351 (2006).

    Article  PubMed  CAS  Google Scholar 

  49. T. Hanai, R. Miyazaki, A. Koseki, and T. Kinoshita. Computational chemical analysis of the retention of acidic drugs on a pentyl-bonded silica gel in reversed-phase liquid chromatography. J. Chromatogr. Sci. 42:354–360 (2004).

    PubMed  CAS  Google Scholar 

  50. O. Sugita, Y. Sawada, Y. Sugiyama, T. Iga, and M. Hanano. Physiologically based pharmacokinetics of drug–drug interaction: a study of tolbutamide–sulfonamide interaction in rats. J. Pharmacokinet. Biopharm. 10:297–316 (1982).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a grant from the National Health and Medical Research Council of Australia and a University of Queensland Development grant. Thanks goes to Anthony Phillips for invaluable training in surgical and perfusion methods, to Gihan Gunawardene for assistance in sample collection, and also to John Prins and Yuri Anissimov for helpful discdussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fanning, K.J., Roberts, M.S. Characterization of the Physiological Spaces and Distribution of Tolbutamide in the Perfused Rat Pancreas. Pharm Res 24, 512–520 (2007). https://doi.org/10.1007/s11095-006-9167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9167-2

Key words

Navigation