Skip to main content

Advertisement

Log in

Micellar Nanocarriers: Pharmaceutical Perspectives

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Micelles, self-assembling nanosized colloidal particles with a hydrophobic core and hydrophilic shell are currently successfully used as pharmaceutical carriers for water-insoluble drugs and demonstrate a series of attractive properties as drug carriers. Among the micelle-forming compounds, amphiphilic copolymers, i.e., polymers consisting of hydrophobic block and hydrophilic block, are gaining an increasing attention. Polymeric micelles possess high stability both in vitro and in vivo and good biocompatibility, and can solubilize a broad variety of poorly soluble pharmaceuticals many of these drug-loaded micelles are currently at different stages of preclinical and clinical trials. Among polymeric micelles, a special group is formed by lipid-core micelles, i.e., micelles formed by conjugates of soluble copolymers with lipids (such as polyethylene glycol–phosphatidyl ethanolamine conjugate, PEG–PE). Polymeric micelles, including lipid-core micelles, carrying various reporter (contrast) groups may become the imaging agents of choice in different imaging modalities. All these micelles can also be used as targeted drug delivery systems. The targeting can be achieved via the enhanced permeability and retention (EPR) effect (into the areas with the compromised vasculature), by making micelles of stimuli-responsive amphiphilic block-copolymers, or by attaching specific targeting ligand molecules to the micelle surface. Immunomicelles prepared by coupling monoclonal antibody molecules to p-nitrophenylcarbonyl groups on the water-exposed termini of the micelle corona-forming blocks demonstrate high binding specificity and targetability. This review will discuss some recent trends in using micelles as pharmaceutical carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. H. Müller. Colloidal Carriers for Controlled Drug Delivery and Targeting: Modification, Characterization, and In Vivo Distribution, Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1991.

    Google Scholar 

  2. S. Cohen and H. Bernstein. Microparticulate Systems for the Delivery of Proteins and Vaccines, Marcel Dekker, New York, 1996.

    Google Scholar 

  3. D. D. Lasic and F. J. Martin. Stealth Liposomes, CRC, Boca Raton, Florida, 1995.

    Google Scholar 

  4. V. P. Torchilin and V. S. Trubetskoy. Which polymers can make nanoparticulate drug carriers long-circulating? Adv. Drug Deliv. Rev. 16:141–155 (1995).

    Article  CAS  Google Scholar 

  5. T. N. Palmer, V. J. Caride, M. A. Caldecourt, J. Twickler, and V. Abdullah. The mechanism of liposome accumulation in infarction. Biochim. Biophys. Acta 797:363–368 (1984).

    CAS  PubMed  Google Scholar 

  6. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori. Tumor vascular permeability and the epr effect in macromolecular therapeutics: a review. J. Control. Release 65:271–284 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. V. P. Torchilin. Polymer-coated long-circulating microparticulate pharmaceuticals. J. Microencapsul. 15:1–19 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46:3–36 (2000).

    Article  Google Scholar 

  9. B. A. Teicher. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval, Humana, Totowa, New Jersey, 1997.

    Google Scholar 

  10. A. M. Fernandez, K. Van Derpoorten, L. Dasnois, K. Lebtahi, V. Dubois, T. J. Lobl, S. Gangwar, C. Oliyai, E. R. Lewis, D. Shochat, and A. Trouet. N-succinyl-(beta-alanyl-l-leucyl-l-alanyl-l-leucyl)doxorubicin: an extracellularly tumor-activated prodrug devoid of intravenous acute toxicity. J. Med. Chem. 44:3750–3753 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. S. H. Yalkowsky. Techniques of Solubilization of Drugs, Marcel Dekker, New York, 1981.

    Google Scholar 

  12. C. A. Lipinski. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44:235–249 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. B. A. Shabner and G. M. Collings (eds.), Cancer Chemotherapy: Principles and Practice, J.B. Lippincott, Philadelphia, 1990.

  14. K. Yokogawa, E. Nakashima, J. Ishizaki, H. Maeda, T. Nagano, and F. Ichimura. Relationships in the structure-tissue distribution of basic drugs in the rabbit. Pharm. Res. 7:691–696 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. A. Hageluken, L. Grunbaum, B. Nurnberg, R. Harhammer, W. Schunack, and R. Seifert. Lipophilic beta-adrenoceptor antagonists and local anesthetics are effective direct activators of g-proteins. Biochem. Pharmacol. 47:1789–1795 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. D. Thompson and M. V. Chaubal. Cyclodextrins (CDS)—excipients by definition, drug delivery systems by function (part I: injectable applications). Drug Deliv. Technol. 2:34–38 (2000).

    Google Scholar 

  17. H. C. Ansel, L. V. Allen, and N. G. Popovich. Pharmaceutical Dosage Forms and Drug Delivery Systems, Kluwer, Norwell, Massachusetts, 1999.

    Google Scholar 

  18. D. D. Lasic and D. Papahadjopoulos. Medical Applications of Liposomes, Elsevier, New York, 1998.

    Google Scholar 

  19. P. P. Constantinides, K. J. Lambert, A. K. Tustian, B. Schneider, S. Lalji, W. Ma, B. Wentzel, D. Kessler, D. Worah, and S. C. Quay. Formulation development and antitumor activity of a filter-sterilizable emulsion of paclitaxel. Pharm. Res. 17:175–182 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. R. Ray, A. H. Kibbe, R. Rowe, P. Shleskey, and P. Weller. Handbook of Pharmaceutical Excipients, APhA, Washington, District of Columbia, 2003.

    Google Scholar 

  21. M. J. Rosen (ed.), Surfactants and Interfacial Phenomena, Wiley, New York, 1989.

  22. K. L. Mittal and B. Lindman (eds.), Surfactants in Solution (vols. 1–3), Plenum, New York, 1991.

  23. M. Jones and J. Leroux. Polymeric micelles—a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm. 48:101–111 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. A. Martin (ed.), Physical Pharmacy. Lippinkott, Williams and Wilkins, Philadelphia, 1993.

  25. D. D. Lasic. Mixed micelles in drug delivery. Nature 355: 279–280 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. P. H. Elworthy, A. T. Florence, and C. B. Macfarlane (eds.), Solubilization by Surface Active Agents, Chapman & Hall, London, UK, 1968.

  27. D. Attwood and A. T. Florence (eds.), Surfactant Systems, Chapman & Hall, London, UK, 1983.

  28. A. V. Kabanov, E. V. Batrakova, and N. S. Melik-Nubarov et al. A new class of drug carriers; micells poly(oxyethylene)–poly(oxypropylene) block copolymers as microcontainers for drug targeting from blood to brain. J. Control. Release 22:141–158 (1992).

    Article  CAS  Google Scholar 

  29. G. S. Kwon. Diblock copolymer nanoparticles for drug delivery. Crit. Rev. Ther. Drug Carr. Syst. 15:481–512 (1998).

    CAS  Google Scholar 

  30. M. Jones and J. Leroux. Polymeric micelles—a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm. 48:101–111 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. V. P. Torchilin. Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release 73:137–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. A. A. Gabizon. Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Adv. Drug Deliv. Rev. 16:285–294 (1995).

    Article  CAS  Google Scholar 

  33. G. S. Kwon and K. Kataoka. Block copolymer micelles as long-circulating drug vehicles. Adv. Drug Deliv. Rev. 16:295–309 (1995).

    Article  CAS  Google Scholar 

  34. R. K. Jain. Transport of molecules, particles, and cells in solid tumors. Ann. Rev. Biomed. Eng. 1:241–263 (1999).

    Article  CAS  Google Scholar 

  35. F. Yuan, M. Dellian, M. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55:3752–3756 (1995).

    CAS  PubMed  Google Scholar 

  36. V. Weissig, K. R. Whiteman, and V. P. Torchilin. Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice. Pharm. Res. 15:1552–1556 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. V. S. Trubetskoy and V. P. Torchilin. Use of polyoxyethylene–lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents. Adv. Drug Deliv. Rev. 16:311–320 (1995).

    Article  CAS  Google Scholar 

  38. O. Soga, C. F. van Nostrum, M. Fens, C. J. Rijcken, R. M. Schiffelers, G. Storm, and W. E. Hennink. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J. Control. Release 103:341–353 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. D. Le Garrec, S. Gori, L. Luo, D. Lessard, D. C. Smith, M. A. Yessine, M. Ranger, and J. C. Leroux. Poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) as a new polymeric solubilizer hydrophobic anticancer drugs: in vitro and in vivo evaluation. J. Control. Release 99:83–101 (2004).

    Article  PubMed  CAS  Google Scholar 

  40. X. Shuai, T. Merdan, A. K. Schaper, F. Xi, and T. Kissel. Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjug. Chem. 15:441–448 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. F. Mathot, L. van Beijsterveldt, V. Preat, M. Brewster, and A. Arien. Intestinal uptake and biodistribution of novel polymeric micelles after oral administration. J. Control. Release 111:47–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. E. K. Park, S. Y. Kim, S. B. Lee, and Y. M. Lee. Folate-conjugated methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. J. Control. Release 109:158–168 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. H. Gao, Y. W. Yang, Y. G. Fan, and J. B. Ma. Conjugates of poly(dl-lactic acid) with ethylenediamino or diethylenetriamino bridged bis(beta-cyclodextrin)s and their nanoparticles as protein delivery systems. J. Control. Release 112:301–311 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. D. J. Pillion, J. A. Amsden, C. R. Kensil, and J. Recchia. Structure–function relationship among quillaja saponins serving as excipients for nasal and ocular delivery of insulin. J. Pharm. Sci. 85:518–524 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. F. Lallemand, O. Felt-Baeyens, K. Besseghir, F. Behar-Cohen, and R. Gurny. Cyclosporine a delivery to the eye: a pharmaceutical challenge. Eur. J. Pharm. Biopharm. 56:307–318 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. J. Liaw, S. F. Chang, and F. C. Hsiao. In vivo gene delivery into ocular tissues by eye drops of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (peo–ppo–peo) polymeric micelles. Gene Ther. 8:999–1004 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. G. S. Kwon and K. Kataoka. Block copolymer micelles as long-circulating drug vehicles. Adv. Drug Deliv. Rev. 16:295–309 (1995).

    Article  CAS  Google Scholar 

  48. G. Gaucher, M. H. Dufresne, V. P. Sant, N. Kang, D. Maysinger, and J. C. Leroux. Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Release 109:169–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. H. M. Aliabadi and A. Lavasanifar. Polymeric micelles for drug delivery. Expert Opin. Drug Deliv. 3:139–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. L. Zhang and A. Eisenberg. Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 268:1728–1731 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. G. S. Kwon and T. Okano. Soluble self-assembled block copolymers for drug delivery. Pharm. Res. 16:597–600 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. A. V. Kabanov, E. V. Batrakova, and V. Y Alakhov. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control. Release 82:189–212 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. S. B. La, T. Okano, and K. Kataoka. Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(beta-benzyl L-aspartate) block copolymer micelles. J. Pharm. Sci. 85:85–90 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. R. Gref, A. Domb, P. Quellec, T. Blunk, R. H. Muller, J. M. Verbavatz, and R. Langer. The controlled intravenous delivery of drugs using peg-coated sterically stabilized nanospheres. Adv. Drug Deliv. Rev. 16:215–233 (1995).

    Article  CAS  Google Scholar 

  55. S. A. Hagan, A. G. A. Coombes, and M. C. Garnett, et al. Polylactide-poly(ethelene glycol) copolymers as drug delivery systems. 1. Characterization of water dispersible micelle-forming systems. Langmuir 12:2153–2161 (1996).

    Article  CAS  Google Scholar 

  56. T. Inoue, G. Chen, K. Nakamae, and A. S. Hoffman. An AB block copolymers of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs. J. Control. Release 51:221–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. R. J. Hunter. In Foundations of Colloid Science, Vol. 1, Oxford University Press, New York, 1991.

    Google Scholar 

  58. Z. Gao and A. A. Eisenberg. A model of micellization for block copolymers in solutions. Macromolecules 26:7353–7360 (1993).

    Article  CAS  Google Scholar 

  59. C. M. Marques. Bunchy Micelles. Langmuir 13:1430–1433 (1997).

    Article  CAS  Google Scholar 

  60. G. S. Kwon. Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carr. Syst. 20: 357–403 (2003).

    Article  CAS  Google Scholar 

  61. H. Otsuka, Y. Nagasaki, and K. Kataoka. PEGylated nanoparticles for biological and harmaceutical applications. Adv. Drug Deliv. Rev. 55:403–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. M. L. Adams, A. Lavasanifar, and G. S. Kwon. Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 92: 1343–1355 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. A. N. Lukyanov and V. P. Torchilin. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv. Drug Deliv. Rev. 56:1273–1289 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. A. V. Kabanov, P. Lemieux, S. Vinogradov, and V. Alakhov. Pluronic block copolymers: novel functional molecules for gene therapy. Adv. Drug Deliv. Rev. 54:223–233 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Y. Kakizawa and K. Kataoka. Block copolymer micelles for delivery of gene and related compounds. Adv. Drug Deliv. Rev. 54:203–222 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. T. Morcol, P. Nagappan, L. Nerenbaum, A. Mitchell, and S. J. Bell. Calcium phosphate–PEG–insulin–casein (CAPIC) particles as oral delivery systems for insulin. Int. J. Pharm. 277: 91–97 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. A. Abuchowski, T. van Es, N. C. Palczuk, J. R. McCoy, and F. F. Davis. Treatment of l5178y tumor-bearing bdf1 mice with a nonimmunogenic l-glutaminase-l-asparaginase. Cancer Treat. Rep. 63:1127–1132 (1979).

    CAS  PubMed  Google Scholar 

  68. J. M. Harris, N. E. Martin, and M. Modi. Pegylation: a novel process for modifying pharmacokinetics. Clin. Pharmacokinet. 40:539–551 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. M. J. Roberts, M. D. Bentley, and J. M. Harris. Chemistry for peptide and protein pegylation. Adv. Drug Deliv. Rev. 54: 459–476 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. F. M. Veronese and J. M. Harris. Introduction and overview of peptide and protein pegylation. Adv. Drug Deliv. Rev. 54: 453–456 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. A. L. Klibanov, K. Maruyama, V. P. Torchilin, and L. Huang. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268:235–237 (1990).

    Article  CAS  PubMed  Google Scholar 

  72. P. Calvo, B. Gouritin, I. Brigger, C. Lasmezas, J. Deslys, A. Williams, J. P. Andreux, D. Dormont, and P. Couvreur. Pegylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases. J. Neurosci. Methods 111:151–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. S. M. Moghimi. Chemical camouflage of nanospheres with a poorly reactive surface: towards development of stealth and target-specific nanocarriers. Biochim. Biophys. Acta 1590: 131–139 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. R. Smith and C. Tanford. The critical micelle concentration of dipalmitoylphosphatidylcholine in water and water–methanol solutions. J. Mol. Biol. 67:75–83 (1972).

    Article  CAS  PubMed  Google Scholar 

  75. V. P. Torchilin, V. S. Trubetskoy, K. R. Whiteman, P. Caliceti, P. Ferruti, and F. M. Veronese. New synthetic amphiphilic polymers for steric protection of liposomes in vivo. J. Pharm. Sci. 84:1049–1053 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. V. P. Torchilin, T. S. Levchenko, K. R. Whiteman, A. A. Yaroslavov, A. M. Tsatsakis, A. K. Rizos, E. V. Michailova, and M. I. Shtilman. Amphiphilic poly-n-vinylpyrrolidones: synthesis, properties and liposome surface modification. Biomaterials 22:3035–3044 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. D. Le Garrec, J. Taillefer, J. E. Van Lier, V. Lenaerts, and J. C. Leroux. Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model. J. Drug Target. 10:429–437 (2002).

    Article  PubMed  CAS  Google Scholar 

  78. S. D. Johnson, J. M. Anderson, and R. E. Marchant. Biocompatibility studies on plasma polymerized interface materials encompassing both hydrophobic and hydrophilic surfaces. J. Biomed. Mater. Res. 26:915–35 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. V. P. Torchilin, M. I. Shtilman, V. S. Trubetskoy, K. R. Whiteman, and A. M. Milstein. Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. Biochim. Biophys. Acta 1195:181–184 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. D. Sharma, T. P. Chelvi, J. Kaur, K. Chakravorty, T. K. De, A. Maitra, and R. Ralhan. Novel Taxol formulation: polyvinylpyrrolidone nanoparticle-encapsulated Taxol for drug delivery in cancer therapy. Oncol. Res. 8:281–286 (1996).

    CAS  PubMed  Google Scholar 

  81. M. Moneghini, D. Voinovich, F. Princivalle, and L. Magarotto. Formulation and evaluation of vinylpyrrolidone/vinylacetate copolymer microspheres with carbamazepine. Pharm. Dev. Technol. 5:347–353 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. A. Benahmed, M. Ranger, and J. C. Leroux. Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(d,l-lactide). Pharm. Res. 18: 323–328 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. B. Luppi, I. Orienti, F. Bigucci, T. Cerchiara, G. Zuccari, S. Fazzi, and V. Zecchi. Poly(vinylalcohol-co-vinyloleate) for the preparation of micelles enhancing retinyl palmitate transcutaneous permeation. Drug Deliv. 9:147–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. B. Luppi, F. Bigucci, T. Cerchiara, V. Andrisano, V. Pucci, R. Mandrioli, and V. Zecchi. Micelles based on polyvinyl alcohol substituted with oleic acid for targeting of lipophilic drugs. Drug Deliv. 12:21–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Y. S. Nam, H. S. Kang, J. Y. Park, T. G. Park, S. H. Han, and I. S. Chang. New micelle-like polymer aggregates made from PEI-PLGA diblock copolymers: micellar characteristics and cellular uptake. Biomaterials 24:2053–2059 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. A. V. Kabanov, V. P. Chekhonin, V. Alakhov, E. V. Batrakova, A. S. Lebedev, N. S. Melik-Nubarov, S. A. Arzhakov, A. V. Levashov, G. V. Morozov, and E. S. Severin et al. The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Lett. 258:343–345 (1989).

    Article  CAS  PubMed  Google Scholar 

  87. D. W. Miller, E. V. Batrakova, T. O. Waltner, V. Yu. Alakhov, and A. V. Kabanov. Interactions of pluronic block copolymers with brain microvessel endothelial cells: evidence of two potential pathways for drug absorption. Bioconjug. Chem. 8: 649–657 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. S. Katayose and K. Kataoka. Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly(ethylene glycol)-poly(L-lysine) block copolymer. J. Pharm. Sci. 87:160–163 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. V. S. Trubetskoy, G. S. Gazelle, G. L. Wolf, and V. P. Torchilin. Block-copolymer of polyethylene glycol and polylysine as a carrier of organic iodine: design of long-circulating particulate contrast medium for x-ray computed tomography. J. Drug Target. 4:381–388 (1997).

    CAS  PubMed  Google Scholar 

  90. M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue. Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res. 50:1693–1700 (1990).

    CAS  PubMed  Google Scholar 

  91. A. Harada and K. Kataoka. Novel polyion complex micelles entrapping enzyme molecules in the core. Preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartic acid) block copolymer in aqueous medium. Macromolecules 31:288–294 (1998).

    Article  CAS  Google Scholar 

  92. G. S. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka. Physical entrapment of adriamycin in AB block copolymer micelles. Pharm. Res. 12:192–195 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. G. S. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka. Block copolymer micelles for drug delivery: loading and release of doxorubicin. J. Control. Release 48: 195–201 (1997).

    Article  CAS  Google Scholar 

  94. Y. I. Jeong, J. B. Cheon, S. H. Kim, J. W. Nah, Y. M. Lee, and Y. K. Sung et al. Clonazepam release from core-shell type nanoparticles in vitro. J. Control. Release 51:169–178 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. S. Y. Kim, I. G. Shin, Y. M. Lee, C. G. Cho, and Y. K. Sung. Metoxy poly(ethylene glucol) and ɛ-caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviors. J. Control. Release 51:13–22 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. C. Allen, Y. Yu, D. Maysinger, and A. Eisenberg. Polycaprolactone-b-poly(ethylene oxide) block copolymer micelles as a novel drug delivery vehicle for neurotrophic agents FK506 and L-685,818. Bioconjug. Chem. 9:564–572 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. M. Ramaswamy, X. Zhang, H. Burt, and K. M. Wasan. Human plasma distribution of free paclitaxel and paclitaxel associated with diblock copolymers. J. Pharm. Sci. 86:460–464 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. A. V. Kabanov and V. A. Kabanov. Interpolyelectrolyte and block ionomer complexes for gene delivery: physico-chemical aspects. Adv. Drug Deliv. Rev. 30:49–60 (1990).

    Article  Google Scholar 

  99. V. Toncheva, E. Schacht, S. Y. Ng, J. Barr, and J. Heller. Use of block copolymers of poly(ortho esters) and poly (ethylene glycol) micellar carriers as potential tumour targeting systems. J. Drug Target. 11:345–353 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Y. Tang, S. Y. Liu, S. P. Armes, and N. C. Billingham. Solubilization and controlled release of a hydrophobic drug using novel micelle-forming ABC triblock copolymers. Biomacromolecules 4:1636–1645 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. W. J. Lin, L. W. Juang, and C. C. Lin. Stability and release performance of a series of pegylated copolymeric micelles. Pharm. Res. 20:668–673 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. S. C. Lee, C. Kim, I. Chan Kwon, H. Chung, and S. Young Jeong. Polymeric micelles of poly(2-ethyl-2-oxazoline)-block-poly(epsilon-caprolactone) copolymer as a carrier for paclitaxel. J. Control. Release 89:437–446. (2003).

    Article  CAS  Google Scholar 

  103. G. B. Jiang, D. Quan, K. Liao, and H. Wang. Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery. Mol. Pharmacol. 3:152–160 (2006).

    Article  CAS  Google Scholar 

  104. S. Weiping, Y. Changqing, C. Yanjing, Z. Zhiguo, and K. Xiangzheng. Self-assembly of an amphiphilic derivative of chitosan and micellar solubilization of puerarin. Colloids Surf., B Biointerfaces 48:13–16 (2006).

    Article  CAS  Google Scholar 

  105. A. V. Ambade, E. N. Savariar, and S. Thayumanavan. Dendrimeric micelles for controlled drug release and targeted delivery. Mol. Pharmacol. 2:264–272 (2005).

    Article  CAS  Google Scholar 

  106. D. Bhadra, S. Bhadra, and N. K. Jain. Pegylated lysine based copolymeric dendritic micelles for solubilization and delivery of artemether. J. Pharm. Pharm. Sci. 8:467–482 (2005).

    CAS  PubMed  Google Scholar 

  107. K. Prompruk, T. Govender, S. Zhang, C. D. Xiong, and S. Stolnik. Synthesis of a novel peg-block-poly(aspartic acid-stat-phenylalanine) copolymer shows potential for formation of a micellar drug carrier. Int. J. Pharm. 297:242–253 (2005).

    CAS  PubMed  Google Scholar 

  108. J. Djordjevic, M. Barch, and K. E. Uhrich. Polymeric micelles based on amphiphilic scorpion-like macromolecules: novel carriers for water-insoluble drugs. Pharm. Res. 22:24–32 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. L. Tao, and K. E. Uhrich. Novel amphiphilic macromolecules and their in vitro characterization as stabilized micellar drug delivery systems. J. Colloid Interface Sci. 298:102–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. F. Wang, T. K. Bronich, A. V. Kabanov, R. D. Rauh, and J. Roovers. Synthesis and evaluation of a star amphiphilic block copolymer from poly(epsilon-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier. Bioconjug. Chem. 16:397–405 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. H. Arimura, Y. Ohya, and T. Ouchi. Formation of core-shell type biodegradable polymeric micelles from amphiphilic poly(aspartic acid)-block-polylactide diblock copolymer. Biomacromolecules 6:720–725 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. D. D. Lasic, M. C. Woodle, F. J. Martin, and T. Valentincic. Phase behavior of “stealth-lipid” decithin mixtures. Period. Biol. 93:287–290 (1991).

    Google Scholar 

  113. S. J. Duquemin and J. R. Nixon. The effect of sodium lauryl sulphate, cetrimide and polysorbate 20 surfactants on complex coacervate volume and droplet size. J. Pharm. Pharmacol. 37: 698–702 (1985).

    CAS  PubMed  Google Scholar 

  114. V. T. Torchilin, A. N. Lukyanov, Z. Gao, and B. Papahadjopoulos-Sternberg. Proc. Natl. Acad. Sci. USA 100:6039–6044. (2003).

    Article  CAS  PubMed  Google Scholar 

  115. A. N. Lukyanov, Z. Gao, L. Mazzola, and V. P. Torchilin. Polyethylene glycol-diacyllipid micelles demonstrate increased acculumation in subcutaneous tumors in mice. Pharm. Res. 19: 1424–1429 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. A. N. Lukyanov, W. C. Hartner, and V. P. Torchilin. Increased accumulation of peg-pe micelles in the area of experimental myocardial infarction in rabbits. J. Control. Release 94:187–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. J. Wang, D. A. Mongayt, A. N. Lukyanov, T. S. Levchenko, and V. P. Torchilin. Preparation and in vitro synergistic anticancer effect of vitamin k3 and 1,8-diazabicyclo[5,4,0]undec-7-ene in poly(ethylene glycol)-diacyllipid micelles. Int. J. Pharm. 272:129–135 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. A. Krishnadas, I. Rubinstein, and H. Onyuksel. Sterically stabilized phospholipid mixed micelles: in vitro evaluation as a novel carrier for water-insoluble drugs. Pharm. Res. 20:297–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Z. Gao, A. Lukyanov, A. Singhal, and V. Torchilin. Diacylipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett. 2:979–982 (2002).

    Article  CAS  Google Scholar 

  120. R. Nagarajan and K. Ganesh. Block copolymer self-assembly in selective solvents: theory of solubilization in spherical micelles. Macromolecules 22:4312–4325 (1989).

    Article  CAS  Google Scholar 

  121. L. Xing, and W. L. Mattice. Large internal structures of micelles of triblock copolymers with small insoluble molecules in their cores. Langmuir 14:4074–4080 (1998).

    Article  CAS  Google Scholar 

  122. C. Allen, D. Maysinger and A. Eisenberg. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf., B Biointerfaces 16:1–35 (1999).

    Article  Google Scholar 

  123. S. Y. Lin and Y. Kawashima. The influence of three poly(oxyethylene)poly(oxypropylene) surface-active block copolymers on the solubility behavior of indomethacin. Pharm. Acta Helv. 60:339–344 (1985)

    CAS  PubMed  Google Scholar 

  124. S. Y. Lin and Y. Kawashima. Pluronic surfactants affecting diazepam solubility, compatibility, and adsorption from i.v. admixture solutions. J. Parenter. Sci. Technol. 41:83–87 (1987).

    CAS  PubMed  Google Scholar 

  125. M. Yokoyama, T. Okano, and K. Kataoka. Improved synthesis of adriamycin-conjugated poly(ethylene oxide)-poly(aspartic acid) block copolymer and formation of unimodal micellar structure with controlled amount of physically entrapped adriamycin. J. Control. Release 32:269–277 (1994).

    Article  CAS  Google Scholar 

  126. M. Yokoyama, S. Fukushima, R. Uehara, K. Okamoto, K. Kataoka, and Y. Sakurai et al. Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J. Control. Release 50:79–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. M. Yokoyama, A. Satoh, Y. Sakurai, T. Okano, Y. Matsumura, and T. Kakizoe et al. Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size. J. Control. Release 55:219–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. E. V. Batrakova, T. Y. Dorodnych, E. Y. Klinskii, E. N. Kliushnenkova, O. Shemchukova, and O. N. Goncharova et al. Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity. Brit. J. Cancer 74:1545–1552 (1996).

    CAS  PubMed  Google Scholar 

  129. A. V. Kabanov, I. R. Nazarova, I. R. Astafieva, E. V. Batrakova V. Yu. Alakhov, and A. A. Yaroslavov et al. Micelle formation and solubilization of fluorescence probes in poly(oxyethylene-b-oxypropylene-b-oxyethylene) solutions. Macromolecules 28:2303–2314 (1995).

    Article  CAS  Google Scholar 

  130. A. V. Kabanov, S. V. Vinogradov, U. G. Suzdaltseva, and V. Yu. Alakhov. Water-soluble block polycations as carriers for oligonucleotide delivery. Bioconjug. Chem. 6:639–643 (1995).

    Article  CAS  PubMed  Google Scholar 

  131. V. Yu. Alakhov and A. V. Kabanov. Block copolymeric biotransport carriers as versatile vehicles for drug delivery. Expert Opin. Investig. Drugs 7:1453–1473 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Y. Matsumura, M. Yokoyama, K. Kataoka, T. Okano, Y. Sakurai and T. Kawaguchi et al. Reduction of the side effects of an antitumor agent, KRN5500, by incorporation of the drug into polymeric micelles. Jpn. J. Cancer Res. 90:122–128 (1999).

    CAS  PubMed  Google Scholar 

  133. G. S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka. Biodistribution of micelle-forming polymer–drug conjugates. Pharm. Res. 10:970–974 (1993).

    Article  CAS  PubMed  Google Scholar 

  134. G. S. Kwon, S. Suwa, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka. Enhanced tumor accumulation and prolonged circulation times of micelles-forming poly(ethylene oxide-aspartate) block copolymers-adriamycin conjugates. J. Control. Release 29:17–23 (1994).

    Article  CAS  Google Scholar 

  135. K. Kataoka, G. S. Kwon, M. Yokoyama, T. Okano, and Y. Sakurai. Block-copolymer micelles as vehicles for drug delivery. J. Control. Release 24:119–132 (1993).

    Article  CAS  Google Scholar 

  136. G. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka. Micelles based on ab block copolymers of poly(ethylene oxide) and poly(benzyl-aspartat). Langmuir 9:945–949 (1993).

    Article  CAS  Google Scholar 

  137. G. S. Kwon and T. Okano. Polymeric micelles as new drug carriers. Adv. Drug Deliv. Rev. 21:107–116 (1996).

    Article  CAS  Google Scholar 

  138. C. Allen, J. Han, Y. Yu, D. Maysinger, and A. Eisenberg. Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone. J. Control. Release 63:275–286 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. V. S. Trubetskoy and V. P. Torchilin. Polyethylene glycol based micelles as carriers of therapeutic and diagnostic agents. STP Pharma. Sci. 6:79–86 (1996).

    Google Scholar 

  140. J. Wang, D. Mongayt, and V. P. Torchilin. Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids. J. Drug Target. 13:73–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. K. M. Huh, S. C. Lee, Y. W. Cho, J. Lee, J. H. Jeong, and K. Park. Hydrotropic polymer micelle system for delivery of paclitaxel. J. Control. Release 101:59–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. H. Lee, F. Zeng, M. Dunne, and C. Allen. Methoxy poly(ethylene glycol)-block-poly(delta-valerolactone) copolymer micelles for formulation of hydrophobic drugs. Biomacromolecules 6:3119–3128 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. M. Watanabe, K. Kawano, M. Yokoyama, P. Opanasopit, T. Okano, and Y. Maitani. Preparation of camptothecin-loaded polymeric micelles and evaluation of their incorporation and circulation stability. Int. J. Pharm. 308:183–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. L. Mu, T. A. Elbayoumi, and V. P. Torchilin. Mixed micelles made of poly(ethylene glycol)–phosphatidylethanolamine conjugate and d-alpha-tocopheryl polyethylene glycol 1000 succinate as pharmaceutical nanocarriers for camptothecin. Int. J. Pharm. 306:142–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. P. Opanasopit, M. Yokoyama, M. Watanabe, K. Kawano, Y. Maitani, and T. Okano. Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting. Pharm. Res. 21:2001–2008 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. P. Xu, E. A. Van Kirk, S. Li, W. J. Murdoch, J. Ren, M. D. Hussain, M. Radosz, and Y. Shen. Highly stable core-surface-crosslinked nanoparticles as cisplatin carriers for cancer chemotherapy. Colloids Surf., B Biointerfaces 48:50–57 (2006).

    Article  CAS  Google Scholar 

  147. A. A. Exner, T. M. Krupka, K. Scherrer, and J. M. Teets. Enhancement of carboplatin toxicity by pluronic block copolymers. J. Control. Release 106:188–197 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. H. Cabral, N. Nishiyama, S. Okazaki, H. Koyama, and K. Kataoka. Preparation and biological properties of dichloro(1,2-diaminocyclohexane)platinum(ii) (dachpt)-loaded polymeric micelles. J. Control. Release 101:223–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. H. M. Aliabadi, A. Mahmud, A. D. Sharifabadi, and A. Lavasanifar. Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine a. J. Control. Release 104: 301–311 (2005).

    CAS  PubMed  Google Scholar 

  150. H. M. Aliabadi, D. R. Brocks, and A. Lavasanifar. Polymeric micelles for the solubilization and delivery of cyclosporine a: pharmacokinetics and biodistribution. Biomaterials 26:7251–7259 (2005).

    Article  PubMed  CAS  Google Scholar 

  151. P. Lim Soo, J. Lovric, P. Davidson, D. Maysinger, and A. Eisenberg. Polycaprolactone-block-poly(ethylene oxide) micelles: a nanodelivery system for 17beta-estradiol. Mol. Pharmacol. 2:519–527 (2005).

    Article  CAS  Google Scholar 

  152. R. Vakil and G. S. Kwon. Peg-phospholipid micelles for the delivery of amphotericin b. J. Control. Release 101:386–389 (2005).

    CAS  PubMed  Google Scholar 

  153. J. Liu, F. Zeng, and C. Allen. Influence of serum protein on polycarbonate-based copolymer micelles as a delivery system for a hydrophobic anti-cancer agent. J. Control. Release 103: 481–497 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. L. Ould-Ouali, M. Noppe, X. Langlois, B. Willems, P. Te Riele, P. Timmerman, M. E. Brewster, A. Arien, and V. Preat. Self-assembling peg-p(cl-co-tmc) copolymers for oral delivery of poorly water-soluble drugs: a case study with risperidone. J. Control. Release 102:657–668 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. S. V. Vinogradov, E. V. Batrakova, S. Li, and A. V. Kabanov. Mixed polymer micelles of amphiphilic and cationic copolymers for delivery of antisense oligonucleotides. J. Drug Target. 12:517–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. R. B. Greenwald, C. W. Gilbert, A. Pendri, C. D. Conover, J. Xia, and A. Martinez. Drug delivery systems: water soluble taxol 2′-poly(ethylene glycol) ester prodrugs-design and in vivo effectiveness. J. Med. Chem. 39:424–431 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. M. Hans, K. Shimoni, D. Danino, S. J. Siegel, and A. Lowman. Synthesis and characterization of mpeg-pla prodrug micelles. Biomacromolecules 6:2708–2717 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Z. Gao, A. N. Lukyanov, A. R. Chakilam, and V. P. Torchilin. Peg-pe/phosphatidylcholine mixed immunomicelles specifically deliver encapsulated taxol to tumor cells of different origin and promote their efficient killing. J. Drug Target. 11:87–92 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. S. Alkan-Onyuksel, H. B. Ramakrishnan, and J. M. Chai. Pezzuto, a mixed micellar formulation suitable for the parenteral administration of taxol. Pharm. Res. 11:206–212 (1994).

    Article  CAS  PubMed  Google Scholar 

  160. H. Maeda, T. Sawa, and T. Konno. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug smancs. J. Control. Release 74:47–61 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. V. Weissig, K. R. Whiteman, and V. P. Torchilin. Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice. Pharm. Res. 15:1552–1556 (1998).

    Article  CAS  PubMed  Google Scholar 

  162. F. Yuan, M. Leunig, S. K. Huang, D. A. Berk, D. Papahadjopoulos, and R. K. Jain. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 54:3352–3356 (1994).

    CAS  PubMed  Google Scholar 

  163. S. K. Hobbs, W. L. Monsky, F. Yuan, W. G. Roberts, L. Griffith, V. P. Torchilin, and R. K. Jain. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. U. S. A. 95:4607–4612 (1998).

    Article  CAS  PubMed  Google Scholar 

  164. W. L. Monsky, D. Fukumura, T. Gohongi, M. Ancukiewcz, H. A. Weich, and V. P. Torchilin et al. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res. 59:4129–4135 (1999).

    CAS  PubMed  Google Scholar 

  165. M. Yokoyama, T. Okano, Y. Sakurai, S. Fukushima, K. Okamoto, and K. Kataoka. Selective delivery of adriamycin to a solid tumor using a polymeric micelle carrier system. J. Drug Target. 7:171–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. M. J. Parr, D. Masin, P. R. Cullis, and M. B. Bally. Accumulation of liposomal lipid and encapsulated doxorubicin in murine Lewis lung carcinoma: the lack of beneficial effects by coating liposomes with poly(ethylene glycol). J. Pharmacol. Exp. Ther. 280:1319–1327 (1997).

    CAS  PubMed  Google Scholar 

  167. G. Helmlinger, F. Yuan, M. Dellian, and R. K. Jain. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat. Med. 3:177–182 (1997).

    Article  CAS  PubMed  Google Scholar 

  168. I. F. Tannock and D. Rotin. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 49:4373–4384 (1989).

    CAS  PubMed  Google Scholar 

  169. F. Kohori, K. Sakai, T. Aoyagi, M. Yokoyama, Y. Sakurai, and T. Okano. Preparation an characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide-b-DL-lactide). J. Control. Release 55:87–98 (1998).

    Article  CAS  PubMed  Google Scholar 

  170. O. Meyer, D. Papahadjopoulos, and J. C. Leroux. Copolymers of N-isopropylacrylamide can trigger pH sensitivity to stable liposomes. FEBS Lett. 41:61–64 (1998).

    Article  Google Scholar 

  171. S. Cammas, K. Suzuki, C. Sone, Y. Sakurai, K. Kataoka, and T. Okano. Thermorespensive polymer nanoparticles with a core-shell micelle structure as site specific drug carriers. J. Control. Release 48:157–164 (1997).

    Article  CAS  Google Scholar 

  172. V. P. Sant, D. Smith, and J. C. Leroux. Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization. J. Control. Release 97:301–312 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. H. S. Yoo, E. A. Lee, and T. G. Park. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J. Control. Release 82:17–27 (2002).

    Article  CAS  PubMed  Google Scholar 

  174. M. C. Jones, M. Ranger, and J. C. Leroux. pH-sensitive unimolecular polymeric micelles: synthesis of a novel drug carrier. Bioconjug. Chem. 14:774–781 (2003).

    Article  CAS  PubMed  Google Scholar 

  175. C. H. Wang, C. H. Wang, and G. H. Hsiue. Polymeric micelles with a ph-responsive structure as intracellular drug carriers. J. Control. Release 108:140–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. G. H. Hsiue, C. H. Wang, C. L. Lo, C. H. Wang, J. P. Li, and J. L. Yang. Environmental-sensitive micelles based on poly(2-ethyl-2-oxazoline)-b-poly(l-lactide) diblock copolymer for application in drug delivery. Int. J. Pharm. 317:69–75 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. C. Giacomelli, L. Le Men, R. Borsali, J. Lai-Kee-Him, A. Brisson, S. P. Armes, and A. L. Lewis. Phosphorylcholine-based ph-responsive diblock copolymer micelles as drug delivery vehicles: light scattering, electron microscopy, and fluorescence experiments. Biomacromolecules 7:817–828 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. W. S. Shim, S. W. Kim, E. K. Choi, H. J. Park, J. S. Kim, and D. S. Lee. Novel pH sensitive block copolymer micelles for solvent free drug loading. Macromol. Biosci. 6:179–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  179. M. Hruby, C. Konak, and K. Ulbrich. Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J. Control. Release 103:137–148 (2005).

    Article  CAS  PubMed  Google Scholar 

  180. Y. Bae, N. Nishiyama, S. Fukushima, H. Koyama, M. Yasuhiro, and K. Kataoka. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug. Chem. 16:122–130 (2005).

    Article  CAS  PubMed  Google Scholar 

  181. C. F. Van Norstrum, D. Naradovic, J. Barends, M. J. Van Steenbergen, and W. E. Hennink. Nanoparticles and hydrogels with transient stability from thermosensitive block copolymers. Proceedings of 30th CRS Meeting, UK (2003) #163.

  182. H. Yan and K. Tsujii. Potential application of poly(n-isopropylacrylamide) gel containing polymeric micelles to drug delivery systems. Colloids Surf., B Biointerfaces 46:142–146 (2005).

    Article  CAS  Google Scholar 

  183. H. Wei, X. Z. Zhang, Y. Zhou, S. X. Cheng, and R. X. Zhuo. Self-assembled thermoresponsive micelles of poly(n-isopropylacrylamide-b-methyl methacrylate). Biomaterials 27:2028–2034 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. S. Q. Liu, Y. W. Tong, and Y. Y. Yang. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(n-isopropylacrylamide-co-n,n-dimethylacrylamide)-b-poly(d,l-lactide-c o-glycolide) with varying compositions. Biomaterials 26:5064–5074 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. J. E. Chung, M. Yokoyama, M. Yamato, T. Aoyagi, Y. Sakurai, and T. Okano. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J. Control. Release 62:115–127 (1999).

    Article  CAS  PubMed  Google Scholar 

  186. N. Rapoport, W. G. Pitt, H. Sun, and J. L. Nelson. Drug delivery in polymeric micelles: from in vitro to in vivo. J. Control. Release 91:85–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  187. Z. G. Gao, H. D. Fain, and N. Rapoport. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J. Control. Release 102:203–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. V. P. Torchilin. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell. Mol. Life Sci. 61:2549–2559 (2004).

    Article  CAS  PubMed  Google Scholar 

  189. S. Vinogradov, E. Batrakova, S. Li, and A. Kabanov. Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells. Bioconjug. Chem. 10:851–860 (1999).

    Article  CAS  PubMed  Google Scholar 

  190. V. P. Chekhonin, A. V. Kabanov, Y. A. Zhirkov, and G. V. Morozov. Fatty acid acylated Fab-fragments of antibodies to neurospecific proteins as carriers for neuroleptic targeted delivery in brain. FEBS Lett. 287:149–152 (1991).

    Article  CAS  PubMed  Google Scholar 

  191. Y. Nagasaki, K. Yasugi, Y. Yamamoto, A. Harada, and K. Kataoka. Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules 2:1067–1070 (2001).

    Article  CAS  PubMed  Google Scholar 

  192. E. Jule, Y. Nagasaki, and K. Kataoka. Lactose-installed poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study. Bioconjug. Chem. 14:177–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  193. M. Ogris, S. Brunner, S. Schuller, R. Kircheis, and E. Wagner. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 6:595–605 (1999).

    Article  CAS  PubMed  Google Scholar 

  194. P. R. Dash, M. L. Read, K. D. Fisher, K. A. Howard, M. Wolfert, D. Oupicky, V. Subr, J. Strohalm, K. Ulbrich, and L. W. Seymour. Decreased binding to proteins and cells of polymeric gene delivery vectors surface modified with a multivalent hydrophilic polymer and retargeting through attachment of transferrin. J. Biol. Chem. 275:3793–802 (2000).

    Article  CAS  PubMed  Google Scholar 

  195. C. P. Leamon, D. Weigl, and R. W. Hendren. Folate copolymer-mediated transfection of cultured cells. Bioconjug. Chem. 10:947–957. (1999).

    Article  CAS  PubMed  Google Scholar 

  196. C. P. Leamon and P. S. Low. Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov. Today 6:44–51 (2001).

    Article  CAS  PubMed  Google Scholar 

  197. J. H. Jeong, S. H. Kim, S. W. Kim, and T. G. Park. In vivo tumor targeting of odn-peg-folic acid/pei polyelectrolyte complex micelles. J. Biomater. Sci., Polym. Ed. 16:1409–1419 (2005).

    Article  CAS  Google Scholar 

  198. E. S. Lee, K. Na, and Y. H. Bae. Polymeric micelle for tumor pH and folate-mediated targeting. J. Control. Release 91:103–113 (2003).

    Article  CAS  PubMed  Google Scholar 

  199. E. S. Lee, K. Na, and Y. H. Bae. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant mcf-7 tumor. J. Control. Release 103:405–418 (2005).

    Article  CAS  PubMed  Google Scholar 

  200. V. P. Torchilin, T. S. Levchenko, A. N. Lukyanov, B. A. Khaw, A. L. Klibanov, R. Rammohan, G. P. Samokhin, and K. R. Whiteman. p-Nitrophenylcarbonyl-PEG–PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim. Biophys. Acta 1511:397–411 (2001).

    Article  CAS  PubMed  Google Scholar 

  201. L. Z. Iakoubov and V. P. Torchilin. A novel class of antitumor antibodies: nucleosome-restricted antinuclear autoantibodies (ANA) from healthy aged nonautoimmune mice. Oncol. Res. 9:439–446 (1997).

    CAS  PubMed  Google Scholar 

  202. J. H. Felgner, R. Kumar, C. N. Sridhar, C. J. Wheeler, Y. J. Tsai, R. Border, P. Ramsey, M. Martin, and P. L. Felgner. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Biol. Chem. 269:2550–2561 (1994).

    CAS  PubMed  Google Scholar 

  203. T. Ota, M. Maeda, and M. Tatsuka. Cationic liposomes with plasmid DNA influence cancer metastatic capability. Anticancer Res. 22:4049–4052 (2002).

    CAS  PubMed  Google Scholar 

  204. S. Kaiser, and M. Toborek. Liposome-mediated high-efficiency transfection of human endothelial cells. J. Vasc. Res. 38: 133–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  205. M. R. Almofti, H. Harashima, Y. Shinohara, A. Almofti, Y. Baba, and H. Kiwada. Cationic liposome-mediated gene delivery: Biophysical study and mechanism of internalization. Arch. Biochem. Biophys. 410:246–253 (2003).

    Article  PubMed  CAS  Google Scholar 

  206. I. M. Hafez, N. Maurer, and P. R. Cullis. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 8:1188–1196 (2001).

    Article  CAS  PubMed  Google Scholar 

  207. R. Ni, Y. Nishikawa, and B. I. Carr. Cell growth inhibition by a novel vitamin k is associated with induction of protein tyrosine phosphorylation. J. Biol. Chem. 273:9906–9911 (1998).

    Article  CAS  PubMed  Google Scholar 

  208. V. P. Torchilin. Peg-based micelles as carriers of contrast agents for different imaging modalities. Adv. Drug Deliv. Rev. 54: 235–252 (2002).

    Article  CAS  PubMed  Google Scholar 

  209. U. P. Schmiedl, J. A. Nelson, L. Teng, F. Starr, R. Malek, and R. J. Ho. Magnetic resonance imaging of the hepatobiliary system: intestinal absorption studies of manganese mesoporphyrin. Acad. Radiol. 2:994–1001 (1995).

    Article  CAS  PubMed  Google Scholar 

  210. C. W. Grant, S. Karlik, and E. Florio. A liposomal MRI contrast agent: phosphatidylethanolamine-dtpa. Magn. Reson. Med. 11:236–243 (1989).

    CAS  PubMed  Google Scholar 

  211. G. W. Kabalka, E. Buonocore, K. Hubner, M. Davis, and L. Huang. Gadolinium-labeled liposomes containing paramagnetic amphipathic agents: targeted MRI contrast agents for the liver. Magn. Reson. Med. 8:89–95 (1988).

    CAS  PubMed  Google Scholar 

  212. E. Unger, T. Fritz, G. Wu, D. Shen, B. Kulik, T. New, M. Crowell, and N. Wilke. Liposomal MR contrast agents. J. Liposome Res. 4:811–834 (1994).

    CAS  Google Scholar 

  213. V. S. Trubetskoy, M. D. Frank-Kamenetsky, K. R. Whiteman, G. L. Wolf, and V. P. Torchilin. Stable polymeric micelles: lymphangiographic contrast media for gamma scintigraphy and magnetic resonance imaging. Acad. Radiol. 3:232–238 (1996).

    Article  CAS  PubMed  Google Scholar 

  214. V. S. Trubetskoy, and V. P. Torchilin. New approaches in the chemical design of Gd-containing liposomes for use in magnetic resonance imaging of lymph nodes. J. Liposome Res. 4:961–980 (1994).

    CAS  Google Scholar 

  215. G. Wolf. Targeted delivery of imaging agents: an overview. In V. P. Torchilin (ed.), Handbook of Targeted Delivery of Imaging Agents. CRC, Boca Raton, Florida, 1995, pp. 3–22.

    Google Scholar 

  216. W. Krause, J. Leike, A. Sachse, and G. Schuhmann-Giampieri. Characterization of iopromide liposomes. Invest. Radiol. 28: 1028–1032 (1993).

    Article  CAS  PubMed  Google Scholar 

  217. P. Leander. A new liposomal contrast medium for CT of the liver. An imaging study in a rabbit tumour model. Acta Radiol. 37:63–68 (1996).

    Article  CAS  PubMed  Google Scholar 

  218. V. P. Torchilin, M. D. Frank-Kamenetsky, and G. L. Wolf. CT visualization of blood pool in rats by using long-circulating, iodine-containing micelles. Acad. Radiol. 6:61–65 (1999).

    Article  CAS  PubMed  Google Scholar 

  219. V. I. Slepnev, L. E. Kuznetsova, A. N. Gubin, E. V. Batrakova, V. Alakhov, and A. V. Kabanov. Micelles of poly(oxyethylene)-poly(oxypropylene) block copolymer (pluronic) as a tool for low-molecular compound delivery into a cell: phosphorylation of intracellular proteins with micelle incorporated [gamma-32p]atp. Biochem. Int. 26:587–595 (1992).

    CAS  PubMed  Google Scholar 

  220. T. Nakanishi, S. Fukushima, K. Okamoto, M. Suzuki, Y. Matsumura, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka. Development of the polymer micelle carrier system for doxorubicin. J. Control. Release 74:295–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  221. H. Uchino, Y. Matsumura, T. Negishi, F. Koizumi, T. Hayashi, T. Honda, N. Nishiyama, K. Kataoka, S. Naito, and T. Kakizoe. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br. J. Cancer 93:678–687 (2005).

    Article  CAS  PubMed  Google Scholar 

  222. T. Y. Kim, D. W. Kim, J. Y. Chung, S. G. Shin, S. C. Kim, D. S. Heo, N. K. Kim, and Y. J. Bang. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 10:3708–3716 (2004).

    Article  CAS  PubMed  Google Scholar 

  223. T. Trimaille, K. Mondon, R. Gurny, and M. Moller. Novel polymeric micelles for hydrophobic drug delivery based on biodegradable poly(hexyl-substituted lactides). Int. J. Pharm. 319:147–154 (2006).

    Article  CAS  PubMed  Google Scholar 

  224. M. N. Sibata, A. C. Tedesco, and J. M. Marchetti. Photophysicals and photochemicals studies of zinc(ii) phthalocyanine in long time circulation micelles for photodynamic therapy use. Eur. J. Pharm. Sci. 23:131–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  225. A. K. Gupta, S. Madan, D. K. Majumdar, and A. Maitra. Ketorolac entrapped in polymeric micelles: preparation, characterisation and ocular anti-inflammatory studies. Int. J. Pharm. 209:1–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  226. M. H. Dufresne, D. L. Garrec, V. Sant, J. C. Leroux, and M. Ranger. Preparation and characterization of water-soluble ph-sensitive nanocarriers for drug delivery. Int. J. Pharm. 277: 81–90 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Torchilin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torchilin, V.P. Micellar Nanocarriers: Pharmaceutical Perspectives. Pharm Res 24, 1–16 (2007). https://doi.org/10.1007/s11095-006-9132-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9132-0

Key words

Navigation