Skip to main content

Advertisement

Log in

Development of 5-FU and Doxorubicin-Loaded Cationic Liposomes against Human Pancreatic Cancer: Implications for Tumor Vascular Targeting

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Human pancreatic adenocarcinoma is a major leading cause of cancer mortality in the United States. Given that current strategies are relatively ineffective against this disease, new treatments are being developed. Liposomes possessing relatively high cationic lipid content preferentially accumulate in tumor angiogenic vessels compared to vessels in normal tissues. We therefore seek to develop cationic liposomes for targeting pancreatic tumor vessels.

Materials and Methods

We report development of 5-fluorouracil (5-FU) and doxorubicin hydrochloride (DOX) loaded in PEGylated cationic liposomes (PCLs). We evaluate cell association, intracellular fate, and cytotoxicity. Human pancreatic cancer cells HPAF-II and Capan-1, and endothelial cells HMEC-1 and HUVEC were used in this study. Intratumoral distribution of PCLs in (HPAF-II) tumors was determined by intravital microscopy.

Results

HUVEC and HMEC-1 were most susceptible to 5-FU after 24 and 48 h, compared to HPAF-II and Capan-1. We observed >90% incorporation of 5-FU and DOX in PCLs for 3–20 mol% preparations, with reduced incorporation for >20 mol% formulations. PCLs showed significantly higher association with human endothelial versus pancreatic cancer cells, and improved growth inhibitory properties of DOX. Intravital microscopy revealed distribution of PCLs along HPAF-II vessels.

Conclusions

Targeting human pancreatic cancer with PCLs may represent a rational alternative to conventional strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Capan-1 and HPAF-II:

human pancreatic cancer cells

Chol:

cholesterol

DOPC:

1,2-dioleoyl-sn-glycerol-phosphatidylcholine

DOPE-PEG:

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-5000

DOTAP:

1,2-dioleoyl-3-trimethylammonium-propane

DOX:

doxorubicin hydrochloride

EBM-2:

endothelial cell basal medium

FITC-dextran:

fluorescein isothiocyanate-dextran

HMEC-1:

human microvascular endothelial cells

HUVEC:

human umbilical vein endothelial cell

MEME:

eagle’s minimum essential medium

PBS:

phosphate buffer saline

PCLs:

PEGylated cationic liposomes

Rhodamine-DPPE:

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine

SCID:

severe combined immunodeficient

5-FU:

5-fluorouracil

References

  1. B. F. El-Rayes, N. V. Adsay, and P. A. Philip. Pancreatic cancer: the evolving role of systemic therapy. Expert Opin. Pharmacother. 2:1939–1947 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. V. Heinemann. Present and future treatment of pancreatic cancer. Semin. Oncol. 29:23–31 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. L. Rosenberg. Pancreatic cancer: a review of emerging therapies. Drugs 1071–1089:1071–1089 (2000).

    Article  Google Scholar 

  4. M. L. Rothenberg. New developments in chemotherapy for patients with advanced pancreatic cancer. Oncology 10:18–22 (1996).

    PubMed  CAS  Google Scholar 

  5. D. P. Ryan and C. G. Willet. Management of locally advanced adenocarcinoma of the pancreas. Hematol./Oncol. Clin. North Am. 16:95–103 (2002).

    Article  Google Scholar 

  6. H. G. Beger, B. Rau, F. Gansauge, B. Poch, and K. H. Link. Treatment of pancreatic cancer: challenge of the facts. World J. Surg. 27:1075–84 (2003).

    Article  PubMed  Google Scholar 

  7. R. Wilkowski, M. Thoma, C. Bruns, E. Duhmke, and V. Heinemann. Combined chemoradiotherapy for isolated local recurrence after primary resection of pancreatic cancer. JOP 11:34–40 (2006).

    Google Scholar 

  8. C. Morizane, T. Okusaka, Y. Ito, H. Ueno, M. Ikeda, Y. Takezako, Y. Kagami, and H. Ikeda. Chemoradiotherapy for locally advanced pancreatic carcinoma in elderly patients. Oncology 68:432–437 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. M. Reni, S. Cordio, C. Milandri, P. Passoni, E. Bonetto, C. Oliani, G. Luppi, R. Nicoletti, L. Galli, R. Bordanaro, A. Passardi, A. Zerbi, G. Balzano, L. Aldrighetti, C. Straudacher, E. Villa, and V. Di Carlo. Gemcitabine versus cisplatin, epirubicin, fluorouracil, and gemcitabine in advanced pancreatic cancer: a randomised controlled multicentrre phase III trial. Lancet Oncol. 6:352–353 (2005).

    Article  CAS  Google Scholar 

  10. D. A. Karlin, J. R. Stroehlein, R. W. Bennetts, R. D. Jones, L. J. Heifetz, and P. S. Mahal. Phase I–II study of the combination of 5-FU, doxorubicin, mitomycin, and semustine IFAMMe) in the treatment of adenocarcinoma of the stomach, gastroesophageal junction, and pancreas. Cancer Treat. Rep. 66:1613–1617 (1982).

    PubMed  CAS  Google Scholar 

  11. D. J. Wagener, Q. van Hoesel, G. S. H. Yap, W. J. Hoogenraad, T. Wobbes, and S. P. Strijk. Phase II trial of 5-fluorouracil, adriamycin and cisplatin (FAP) followed by radiation and 5-fluorouracil in locally advanced pancreatic cancer. Cancer Chemother. Pharmacol. 25:131–134 (1989).

    Article  PubMed  CAS  Google Scholar 

  12. R. B. Campbell, D. Fukumura, E. B. Brown, M. L. Mazzola, Y. Izumi, R. K. Jain, V. P. Torchilin, and L. L. Munn. Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res. 62:6831–6836 (2002).

    PubMed  CAS  Google Scholar 

  13. D. G. Hirst, J. Denekamp, and B. Hobson. Proliferation kinetics of endothelial and tumour cells in three mouse mammary carcinomas. Cell Tissue Kinet. 15:251–61 (1982).

    PubMed  CAS  Google Scholar 

  14. J. Denekamp and B. Hobson. Endothelial-cell proliferation in experimental tumours. Br. J. Cancer 46:711–720 (1982).

    PubMed  CAS  Google Scholar 

  15. J. Folkman. The role of angiogenesis in tumor growth. Semin. Cancer Biol. 3:65–71 (1992).

    CAS  Google Scholar 

  16. C. M. Lee, T. Tanaka, T. Murai, M. Kondo, J. Kimura, W. Su, T. Kitagawa, T. Ito, H. Matsuda, and M. Miyasaka. Novel chondroitin sulfate-binding cationic liposomes loaded with cisplatin efficiently suppress the local growth and liver metastasis of tumor cells in vivo. Cancer Res. 62:4282–4288 (2002).

    PubMed  CAS  Google Scholar 

  17. R. Kunstfeld, G. Weckenhauser, U. Michaelis, M. Teifel, W. Umek, K. Naujoks, K. Wolff, and P. Petzelbauer. Paclitaxel encapsulated in cationic liposomes diminishes tumor angiogenesis and melanoma growth in a “humanized” SCID mouse model. J. Invest. Dermatol. 120:476–82 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. S. Strieth, M. E. Eichhorn, B. Sauer, B. Schulze, M. Teifel, U. Michaelis, and M. Dellian. Neovascular targeting chemotherapy: encapsulation of paclitaxel in cationic liposome impairs functional tumor microvasculature. Int. J. Cancer 110:117–124 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. S. Sengupta, P. Tyagi, S. Chandra, V. Kochupillai, and S. K. Gupta. Encapsulation in cationic liposomes enhances antitumour efficacy and reduces the toxicity of etoposide, a topo-isomerase II inhibitor. Pharmacology 62:163–171 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMohan, J. T. Warren, H. Bokesch, S. Kenney, and M. R. Boyd. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82:1107–1112 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. L. Ricotti, A. Tesei, F. D. Paola, P. Ulivi, G. L. Frassineti, C. Milandri, D. Amadori, and W. Zoli. In vitro schedule-dependent Interaction between Docetaxel and Gemcitabine in human gastric cancer cell lines. Clin. Cancer Res. 9:900–905 (2003).

    PubMed  CAS  Google Scholar 

  22. F. Szoka and D. Papahadjopoulos. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu. Rev. Biophys. Bioeng. 9:467–508 (1980).

    Article  PubMed  CAS  Google Scholar 

  23. J. W. McLean, E. A. Fox, P. Baluk, P. B. Bolton, A. Haskell, R. Pearlman, G. Thurston, E. Y. Umemoto, and D. M. McDonald. Organ-specific endothelial cell uptake of cationic liposome-DNA complexes in mice. Am. J. Physiol. 273:387–404 (1997).

    Google Scholar 

  24. G. Thurston, J. W. McLean, M. Rizen, P. Baluk, A. Haskell, T. J. Murphy, D. Hanahan, and D. M. McDonald. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J. Clin. Invest. 101:1401–1413 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. G. Weckbecker. Biochemical pharmacology and analysis of fluoropyrimidines alone and in combination with modulators. Pharmacol. Ther. 50:367–424 (1991).

    Article  PubMed  CAS  Google Scholar 

  26. R. B. Campbell, S. V. Balasubramanian, and R. M. Straubinger. Physical properties of phospholipid-cationic lipid interactions: Influences on domain structure, liposome size and cellular uptake. Biochim. Biophys. Acta 1512:27–39 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. R. B. Campbell, S. V. Balasubramanian, and R. M. Straubinger. Influence of cationic lipids on the stability and membrane properties of paclitaxel-containing liposomes. J. Pharm. Sci. 90: 1091–1105 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. C. R. Dass. Cytotoxicity issues pertinent to lipoplex-mediated gene therapy in-vivo. J. Pharm. Pharmacol. 54:593–601 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. J. L. Bramson, C. A. Bodner, and R. W. Graham. Activation of host antitumoral responses by cationic lipid/DNA complexes. Cancer Gen. Ther. 7:353–359 (2000).

    Article  CAS  Google Scholar 

  30. M. C. Filion and N. C. Phillips. Anti-inflammatory activity of cationic lipids. Br. J. Pharmacol. 122:551–557 (1997).

    Article  PubMed  CAS  Google Scholar 

  31. D. Papahadjopoulos, T. Allen, A. Gabizon, E. Mayhew, K. Matthay, S. K. Huang, K. D. Lee, M. C. Woddle, D. D. Lasic, C. Redemann, and F. J. Martin. Sterically stabilized liposomes: improvements in pharmacokinetics and anti-tumor efficacy. Proc. Natl. Acad. Sci. USA 88:11460–11464 (1991).

    Article  PubMed  CAS  Google Scholar 

  32. T. M. Allen, C. Hansen, F. Martin, C. Redemann, and A. Yau-Young. Liposomes containing synthetic lipid derivatives of poly(ethyleneglycol) show prolonged circulation half-lives in vivo. Biochim. Biophys. Acta. 1066:29–36 (1991).

    Article  PubMed  CAS  Google Scholar 

  33. A. Gabizon, R. Catane, U. Beatrice, B. Kaufman, T. Safra, R. Cohen, A. H. Martin, and Y. Barenholz. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 54:987–992 (1994).

    PubMed  CAS  Google Scholar 

  34. T. S. Levchenko, R. Rammohan, A. N. Lukyanov, K. R. Whiteman, and V. P. Torchilin. Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int. J. Pharm. 240:95–102 (2002).

    Article  PubMed  CAS  Google Scholar 

  35. J. Denekamp. Vasculature as a target for tumor therapy. Prog. Appl. Microcirc. 4:28–38 (1984).

    Google Scholar 

  36. L. C. Mounkes, W. Zhong, G. Cipres-Palacin, T. D. Heath, and R. Debs. Proteoglycans mediate cationic liposome-DNA complex-based gene delivery in vitro and in vivo. J. Biol. Chem. 1998:26164–26170 (1998).

    Article  Google Scholar 

  37. K. A. Mislickand, and J. D. Baldeschwieler. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc. Natl. Acad. Sci. U. S. A. 93:12349–12354 (1996).

    Article  Google Scholar 

  38. J. H. Levrat, C. Palevody, M. Daumas, G. Ratovo, and E. Hollande. Differentiation of the human pancreatic adenocarcinoma cell line (Capan-1) in culture and co-culture with fibroblasts dome formation. Int. J. Cancer 42:615–621 (1988).

    Article  PubMed  CAS  Google Scholar 

  39. B. Sipos, S. Moser, H. Kalthoff, V. Torok, M. Lohr, and G. Kloppel. A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. Virchows Arch. 442:444–452 (2003).

    PubMed  Google Scholar 

  40. A. Rahman, S. R. Husain, J. Siddiqui, M. Verma, M. Agresti, M. Center, A. R. Safa, and R. I. Glazer. Liposome-mediated modulation of multidrug resistance in human HL-60 leukemia cells. J. Natl. Cancer Inst. 84:1909–1915 (1992).

    Article  PubMed  CAS  Google Scholar 

  41. A. R. Thierry, A. Dritschilo, and A. Rahman. Effect of liposomes on P-glycoprotein function in multidrug resistant cells. Biochem. Biophys. Res. Commun. 187:1098–1105 (1992).

    Article  PubMed  CAS  Google Scholar 

  42. D. A. Gewirtz. A critical evaluation of the mechanisms of action proposed for the antitumor effects of anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 57:724–741 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Campbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalra, A.V., Campbell, R.B. Development of 5-FU and Doxorubicin-Loaded Cationic Liposomes against Human Pancreatic Cancer: Implications for Tumor Vascular Targeting. Pharm Res 23, 2809–2817 (2006). https://doi.org/10.1007/s11095-006-9113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9113-3

Key words

Navigation