Skip to main content
Log in

Alterations in Neuronal Transport but not Blood-Brain Barrier Transport are Observed during Gamma-Hydroxybutyrate (GHB) Sedative/Hypnotic Tolerance

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate if γ-Hydroxybutyrate (GHB) tolerance is mediated by alterations in GHB systemic pharmacokinetics, transport (blood brain barrier (BBB) and neuronal) or membrane fluidity.

Materials and Methods

GHB tolerance in rats was attained by repeated GHB administration (5.31 mmol/kg, s.c., QD for 5 days). GHB sedative/hypnotic effects were measured daily. GHB pharmacokinetics were determined on day 5. In separate groups, on day 6, in situ brain perfusion was performed to assess BBB transport alterations; or in vitro studies were performed (fluorescence polarization measurements of neuronal membrane fluidity or [3H]GABA neuronal accumulation).

Results

GHB sedative/hypnotic tolerance was observed by day 5. No significant GHB pharmacokinetic or BBB transport differences were observed between treated and control rats. Neuronal membrane preparations from GHB tolerant rats showed a significant decrease in fluorescence polarization (treated—0.320 ± 0.009, n = 5; control—0.299 ± 0.009, n = 5; p < 0.05). [3H]GABA neuronal transport V max was significantly increased in tolerant rats (2,110.66 ± 91.06 pmol/mg protein/min vs control (1,612.68 ± 176.03 pmol/mg protein/min; n = 7 p < 0.05).

Conclusions

Short term GHB administration at moderate doses results in the development of tolerance which is not due to altered systemic pharmacokinetics or altered BBB transport, but might be due to enhanced membrane rigidity and increased GABA reuptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AUC:

area under curve

AUMC:

area under first moment curve

BBB:

blood brain barrier

C :

perfusion fluid concentration of tracer

CL/F :

systemic clearance

CLin :

influx clearance

C max :

maximum concentration

CNS:

central nervous system

DPH:

1,6-diphenyl-1,3,5-hexatriene

GABA:

γ-aminobutyric acid

GBL:

γ-butyrolactone

GHB:

γ-hydroxybutyrate

LRR:

loss in righting reflex

MCT:

monocarboxylate acid transporter

MRT:

mean residence time

P :

fluorescence polarization

Q :

mass of radiotracer in the brain region normalized for wet brain tissue weight

r :

anisotropy

RRR:

return in righting reflex

S 2 :

lipid order

T :

time of perfusion

T 1/2 :

half life

T max :

time to maximum concentration

V/F:

volume of distribution

V vasc :

regional volume of the cerebrovascular capillary bed

References

  1. F. Caputo, G. Addolorato, F. Lorenzini, M. Domenicali, G. Greco, A. del RE, G. Gasbarrini, G. F. Stefanini, and M. Bernardi. Gamma-hydroxybutyric acid versus naltrexone in maintaining alcohol abstinence: an open randomized comparative study. Drug Alcohol Depend. 70:85–91 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. P. Follesa, F. Biggio, L. Mancuso, S. Cabras, S. Caria, G. Gorini, A. Manca, A. Orru, and G. Biggio. Ethanol withdrawal-induced up-regulation of the alpha2 subunit of the GABAA receptor and its prevention by diazepam or gamma-hydroxybutyric acid. Mol. Brain Res. 120:130–137 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. M. B. Scharf, M. Baumann, and D. V. Berkowitz. The effects of sodium oxybate on clinical symptoms and sleep patterns in patients with fibromyalgia. J. Rheumatol. 30:1070–1074 (2003).

    PubMed  CAS  Google Scholar 

  4. L. Gallimberti, M. Spella, C. Soncini, and G. Gessa. Gamma-hydroxybutyric acid (GHB) in treatment of alcohol and heroin dependence. Alcohol 20:257–262 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. C. G. Wong, K. M. Gibson, and O. C. Snead, 3rd. From the street to the brain: neurobiology of the recreational drug gamma-hydroxybutyric acid. Trends Pharmacol. Sci. 25:29–34 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. M. Mamelak. Neurodegeneration, sleep, and cerebral energy metabolism: a testable hypothesis. J. Geriatr. Psychiatry Neurol. 10:29–32 (1997).

    PubMed  CAS  Google Scholar 

  7. G. Tunnicliff. Significance of gamma-hydroxybutyric acid in the brain. Gen. Pharmacol. 23:1027–1034 (1992).

    PubMed  CAS  Google Scholar 

  8. J. E. Dyer. gamma-Hydroxybutyrate: a health-food product producing coma and seizurelike activity. Am. J. Emerg. Med. 9:321–324 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. G. P. Galloway, S. L. Frederick, F. E. Staggers, Jr., M. Gonzales, S. A. Stalcup, and D. E. Smith. Gamma-hydroxybutyrate: an emerging drug of abuse that causes physical dependence.[see comment]. Addiction 92:89–96 (1997).

    Article  PubMed  CAS  Google Scholar 

  10. G. Addolorato, E. Castelli, G. F. Stefanini, G. Casella, F. Caputo, L. Marsigli, M. Bernardi, and G. Gasbarrini. An open multicentric study evaluating 4-hydroxybutyric acid sodium salt in the medium-term treatment of 179 alcohol dependent subjects. GHB Study Group. Alcohol 31:341–345 (1996).

    CAS  Google Scholar 

  11. M. Mamelak, M. B. Scharf, and M. Woods. Treatment of narcolepsy with gamma-hydroxybutyrate. A review of clinical and sleep laboratory findings. Sleep 9:285–289 (1986).

    PubMed  CAS  Google Scholar 

  12. M. B. Scharf, D. Brown, M. Woods, L. Brown, and J. Hirschowitz. The effects and effectiveness of gamma-hydroxybutyrate in patients with narcolepsy. J. Clin. Psychiatry 46:222–225 (1985).

    PubMed  CAS  Google Scholar 

  13. T. C. Bania, T. Ashar, G. Press, and P. M. Carey. Gamma-hydroxybutyric acid tolerance and withdrawal in a rat model. Acad. Emerg. Med. 10:697–704 (2003).

    Article  PubMed  Google Scholar 

  14. Y. Itzhak and S. F. Ali. Repeated administration of gamma-hydroxybutyric acid (GHB) to mice: assessment of the sedative and rewarding effects of GHB. Ann. N. Y. Acad. Sci. 965:451–460 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. D. K. Van Sassenbroeck, P. De Paepe, F. M. Belpaire, P. A. Boon, and W. A. Buylaert. Tolerance to the hypnotic and electroencephalographic effect of gamma-hydroxybutyrate in the rat: pharmacokinetic and pharmacodynamic aspects. J. Pharm. Pharmacol. 55:609–615 (2003).

    Article  PubMed  Google Scholar 

  16. O. Giorgi and M. C. Rubio. Decreased 3H-L-quinuclidinyl benzilate binding and muscarine receptor subsensitivity after chronic gamma-butyrolactone treatment. Naunyn Schmiedeberg's Arch. Pharmacol. 318:14–18 (1981).

    Article  CAS  Google Scholar 

  17. C. Ratomponirina, S. Gobaille, Y. Hode, V. Kemmel, and M. Maitre. Sulpiride, but not haloperidol, up-regulates gamma-hydroxybutyrate receptors in vivo and in cultured cells. Eur. J. Pharmacol. 346:331–337 (1998).

    Article  PubMed  CAS  Google Scholar 

  18. H. Tsuchiya. Structure-specific membrane-fluidizing effect of propofol. Clin. Exp. Pharmacol. Physiol. 28:292–299 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. S. V. Balasubramanian, R. B. Campbell, and R. M. Straubinger. Propofol, a general anesthetic, promotes the formation of fluid phase domains in model membranes. Chem. Phys. Lipids 114:35–44 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. K. L. Kopnisky and S. E. Hyman. Molecular and cellular biology of addiction. In K. L. Davis and American College of Neuropsychopharmacology (eds.), Neuropsychopharmacology: The Fifth Generation of Progress: An Official Publication of the American College of Neuropsychopharmacology, Lippincott/Williams & Wilkins, Philadelphia, 2002, pp. xxi, 2010 p., [24] p. of plates.

    Google Scholar 

  21. M. Shinitzky. Physiology of Membrane Fluidity. CRC, Boca Raton, Florida, 1984.

    Google Scholar 

  22. H. J. Lee, S. V. Balasubramanian, H. Murer, J. Biber, and M. E. Morris. Modulation of sulfate renal transport by alterations in cell membrane fluidity. J. Pharm. Sci. 88:976–980 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. S. V. Balasubramanian, R. M. Straubinger, and M. E. Morris. Salicylic acid induces changes in the physical properties of model and native kidney membranes. J. Pharm. Sci. 86:199–204 (1997).

    Article  PubMed  CAS  Google Scholar 

  24. S. Gobaille, V. Hechler, C. Andriamampandry, V. Kemmel, and M. Maitre. gamma-Hydroxybutyrate modulates synthesis and extracellular concentration of gamma-aminobutyric acid in discrete rat brain regions in vivo. J. Pharmacol. Exp. Ther. 290:303–309 (1999).

    PubMed  CAS  Google Scholar 

  25. V. Hechler, C. Ratomponirina, and M. Maitre. gamma-Hydroxybutyrate conversion into GABA induces displacement of GABAB binding that is blocked by valproate and ethosuximide. J. Pharmacol. Exp. Ther. 281:753–760 (1997).

    PubMed  CAS  Google Scholar 

  26. E. M. Bernstein and M. W. Quick. Regulation of gamma-aminobutyric acid (GABA) transporters by extracellular GABA. J. Biol. Chem. 274:889–895 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. I. Bhattacharya and K. M. Boje. GHB (gamma-hydroxybutyrate) carrier-mediated transport across the blood–brain barrier. J. Pharmacol. Exp. Ther. 311:92–98 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. H. L. Fung, E. Haas, J. Raybon, J. Xu, and S. M. Fung. Liquid chromatographic–mass spectrometric determination of endogenous gamma-hydroxybutyrate concentrations in rat brain regions and plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 807:287–291 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. V. P. Whittaker, I. A. Michaelson, and R. J. Kirkland. The separation of synaptic vesicles from nerve-ending particles (‘synaptosomes’). Biochem. J. 90:293–303 (1964).

    PubMed  CAS  Google Scholar 

  30. G. R. Bartlett. Phosphorus assay in column chromatography. J. Biol. Chem. 234:466–468 (1959).

    PubMed  CAS  Google Scholar 

  31. O. Lowry, N. Rosebrough, A. Farr, and R. Randall. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275 (1951).

    PubMed  CAS  Google Scholar 

  32. A. Pastuszko, D. F. Wilson, and M. Erecinska. Net uptake of gamma-aminobutyric acid by a high-affinity system of rat brain synaptosomes. Proc. Natl. Acad. Sci. U. S. A. 78:1242–1244 (1981).

    Article  PubMed  CAS  Google Scholar 

  33. J. H. Hu, Y. H. Ma, N. Yang, Z. T. Mei, M. H. Zhang, J. Fei, and L. H. Guo. Up-regulation of gamma-aminobutyric acid transporter I mediates ethanol sensitivity in mice. Neuroscience 123:807–812 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. B. I. Kanner. Active transport of gamma-aminobutyric acid by membrane vesicles isolated from rat brain. Biochemistry 17:1207–1211 (1978).

    Article  PubMed  CAS  Google Scholar 

  35. J. T. Lettieri and H. L. Fung. Dose-dependent pharmacokinetics and hypnotic effects of sodium gamma-hydroxybutyrate in the rat. J. Pharmacol. Exp. Ther. 208:7–11 (1979).

    PubMed  CAS  Google Scholar 

  36. W. van der Meer, H. Pottel, W. Herreman, M. Ameloot, H. Hendrickx, and H. Schroder. Effect of orientational order on the decay of the fluorescence anisotropy in membrane suspensions. A new approximate solution of the rotational diffusion equation. Biophys. J. 46:515–523 (1984).

    Article  Google Scholar 

  37. E. Van Cauter, L. Plat, M. B. Scharf, R. Leproult, S. Cespedes, M. L'Hermite-Baleriaux, and G. Copinschi. Simultaneous stimulation of slow-wave sleep and growth hormone secretion by gamma-hydroxybutyrate in normal young Men. J. Clin. Invest. 100:745–753 (1997).

    Article  Google Scholar 

  38. N. Moller, J. Gjedsted, L. Gormsen, J. Fuglsang, and C. Djurhuus. Effects of growth hormone on lipid metabolism in humans. Growth Horm. IGF Res. 13(Suppl A):S18–S21 (2003).

    Article  CAS  Google Scholar 

  39. K. L. Nicholson and R. L. Balster. GHB: a new and novel drug of abuse. Drug Alcohol Depend. 63:1–22 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. L. P. Carter, H. Wu, W. Chen, C. M. Cruz, R. J. Lamb, W. Koek, A. Coop, and C. P. France. Effects of gamma-hydroxybutyrate (GHB) on schedule-controlled responding in rats: role of GHB and GABAB receptors. J. Pharmacol. Exp. Ther. 308:182–188 (2004).

    Article  PubMed  CAS  Google Scholar 

  41. J. T. Lettieri and H. L. Fung. Improved pharmacological activity via pro-drug modification: comparative pharmacokinetics of sodium gamma-hydroxybutyrate and gamma-butyrolactone. Res. Commun. Chem. Pathol. Pharmacol. 22:107–118 (1978).

    PubMed  CAS  Google Scholar 

  42. M. Maitre, V. Hechler, P. Vayer, S. Gobaille, C. D. Cash, M. Schmitt, and J. J. Bourguignon. A specific gamma-hydroxybutyrate receptor ligand possesses both antagonistic and anticonvulsant properties. J. Pharmacol. Exp. Ther. 255:657–663 (1990).

    PubMed  CAS  Google Scholar 

  43. S. s. NCADI. GHB www.health.org/nongovpubs/ghbqa/, Vol. 2005.

  44. A. Gjedde and C. Crone. Induction processes in blood–brain transfer of ketone bodies during starvation. Am. J. Physiol. 229:1165–1169 (1975).

    PubMed  CAS  Google Scholar 

  45. M. Pollay and F. A. Stevens. Starvation-induced changes in transport of ketone bodies across the blood–brain barrier. J. Neurosci. Res. 5:163–172 (1980).

    Article  PubMed  CAS  Google Scholar 

  46. R. L. Leino, D. Z. Gerhart, R. Duelli, B. E. Enerson, and L. R. Drewes. Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem. Int. 38:519–527 (2001).

    Article  PubMed  CAS  Google Scholar 

  47. H. Stibler, F. Beauge, and S. Borg. Changes in (Na+ + K+) ATPase activity and the composition of surface carbohydrates in erythrocyte membranes in alcoholics. Alcohol. Clin. Exp. Res. 8:522–527 (1984).

    Article  PubMed  CAS  Google Scholar 

  48. D. L. Zvosec, S. W. Smith, J. R. McCutcheon, J. Spillane, B. J. Hall, and E. A. Peacock. Adverse events, including death, associated with the use of 1,4-butanediol. N. Engl. J. Med. 344:87–94 (2001).

    Article  PubMed  CAS  Google Scholar 

  49. M. A. Carai, G. Colombo, G. Brunetti, S. Melis, S. Serra, G. Vacca, S. Mastinu, A. M. Pistuddi, C. Solinas, G. Cignarella, G. Minardi, and G. L. Gessa. Role of GABA(B) receptors in the sedative/hypnotic effect of gamma-hydroxybutyric acid. Eur. J. Pharmacol. 428:315–321 (2001).

    Article  PubMed  CAS  Google Scholar 

  50. M. L. Beckman, E. M. Bernstein, and M. W. Quick. Protein kinase C regulates the interaction between a GABA transporter and syntaxin 1A. J. Neurosci. 18:6103–6112 (1998).

    PubMed  CAS  Google Scholar 

  51. M. L. Beckman, E. M. Bernstein, and M. W. Quick. Multiple G protein-coupled receptors initiate protein kinase C redistribution of GABA transporters in hippocampal neurons. J Neurosci. 19:RC9 (1999).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. David Soda for his assistance with the jugular vein cannulations and Dr. S. Balasubramanian and his group for insightful discussions and suggestions for the membrane fluidity fluorescence studies. This work was supported in part by National Institutes of Health grant DA 14988 and a Merck predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. K. Boje.

Additional information

Indranil Bhattacharya and Joseph J. Raybon have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, I., Raybon, J.J. & Boje, K.M.K. Alterations in Neuronal Transport but not Blood-Brain Barrier Transport are Observed during Gamma-Hydroxybutyrate (GHB) Sedative/Hypnotic Tolerance. Pharm Res 23, 2067–2077 (2006). https://doi.org/10.1007/s11095-006-9066-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9066-6

Key words

Navigation