Skip to main content
Log in

Interaction of the Macrolide Antibiotic Azithromycin with Lipid Bilayers: Effect on Membrane Organization, Fluidity, and Permeability

  • Research Papers
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

No Heading

Purpose.

To investigate the effect of a macrolide antibiotic, azithromycin, on the molecular organization of DPPC:DOPC, DPPE:DOPC, SM:DOPC, and SM:Chol:DOPC lipid vesicles as well as the effect of azithromycin on membrane fluidity and permeability.

Methods.

The molecular organization of model membranes was characterized by atomic force microscopy (AFM), and the amount of azithromycin bound to lipid membranes was determined by equilibrium dialysis. The membrane fluidity and permeability were analyzed using fluorescence polarization studies and release of calcein-entrapped liposomes, respectively.

Results.

In situ AFM images revealed that azithromycin leads to the erosion and disappearance of DPPC and DPPE gel domains, whereas no effect was noted on SM and SM:cholesterol domains. Although azithromycin did not alter the permeability of DPPC:DOPC, DPPE:DOPC, SM:DOPC, and SM:Chol:DOPC lipid vesicles, it increased the fluidity at the hydrophilic/hydrophobic interface in DPPC:DOPC and DPPE:DOPC models. This effect may be responsible for the ability of azithromycin to erode the DPPC and DPPE gel domains, as observed by AFM.

Conclusions.

This study shows the interest of both AFM and biophysical methods to characterize the drug-membrane interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. S. J. Singer and G. L. Nicolson. The fluid mosaic model of the structure of cell membranes. Science 175:720–731 (1972).

    Google Scholar 

  2. 2. P. Somerharju, J. A. Virtanen, and K. H. Cheng. Lateral organisation of membrane lipids. The superlattice view. Biochim. Biophys. Acta 1440:32–48 (1999).

    Google Scholar 

  3. 3. S. Pfeffer. Membrane domains in the secretory and endocytic pathways. Cell 112:507–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. 4. B. van Deurs, K. Roepstorff, A. M. Hommelgaard, and K. Sandvig. Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol. 13:92–100 (2003).

    Google Scholar 

  5. 5. J. C. Holthuis, G. van Meer, and K. Huitema. Lipid microdomains, lipid translocation and the organization of intracellular membrane transport (Review). Mol. Membr. Biol. 20:231–241 (2003).

    Google Scholar 

  6. 6. A. D. Dergunov, J. Taveirne, B. Vanloo, H. Caster, and M. Rosseneu. Structural organization of lipid phase and protein-lipid interface in apolipoprotein-phospholipid recombinants: influence of cholesterol. Biochim. Biophys. Acta 1346:131–146 (1997).

    Google Scholar 

  7. 7. K. Jorgensen, J. H. Ipsen, O. G. Mouritsen, and M. J. Zuckermann. The effect of anaesthetics on the dynamic heterogeneity of lipid membranes. Chem. Phys. Lipids 65:205–216 (1993).

    Google Scholar 

  8. 8. K. Jorgensen, J. H. Ipsen, O. G. Mouritsen, D. Bennett, and M. J. Zuckermann. The effects of density fluctuations on the partitioning of foreign molecules into lipid bilayers: application to anaesthetics and insecticides. Biochim. Biophys. Acta 1067:241–253 (1991).

    Google Scholar 

  9. 9. T. Soderlund, J. Y. Lehtonen, and P. K. Kinnunen. Interactions of cyclosporin A with phospholipid membranes: effect of cholesterol. Mol. Pharmacol. 55:32–38 (1999).

    Google Scholar 

  10. 10. J. J. Wenz and F. J. Barrantes. Steroid structural requirements for stabilizing or disrupting lipid domains. Biochemistry 42:14267–14276 (2003).

    Google Scholar 

  11. 11. A. B. Hendrich, O. Wesolowska, and K. Michalak. Trifluoperazine induces domain formation in zwitterionic phosphatidylcholine but not in charged phosphatidylglycerol bilayers. Biochim. Biophys. Acta 1510:414–425 (2001).

    Google Scholar 

  12. 12. A. Schanck, M. P. Mingeot-Leclercq, P. M. Tulkens, D. Carrier, I. C. Smith, and H. C. Jarrell. Interactions of aminoglycoside antibiotics with phospholipids. A deuterium nuclear magnetic resonance study. Chem. Phys. Lipids 62:153–163 (1992).

    Google Scholar 

  13. 13. D. Tyteca, A. Schanck, Y. F. Dufrene, M. Deleu, P. J. Courtoy, P. M. Tulkens, and M. P. Mingeot-Leclercq. The macrolide antibiotic azithromycin interacts with lipids and affects membrane organization and fluidity: studies on Langmuir-Blodgett monolayers, liposomes and J774 macrophages. J. Membr. Biol. 192:203–215 (2003).

    Google Scholar 

  14. 14. D. Tyteca, S. P. Van Der, M. Mettlen, F. Van Bambeke, P. M. Tulkens, M. P. Mingeot-Leclercq, and P. J. Courtoy. Azithromycin, a lysosomotropic antibiotic, has distinct effects on fluid-phase and receptor-mediated endocytosis, but does not impair phagocytosis in J774 macrophages. Exp. Cell Res. 281:86–100 (2002).

    Google Scholar 

  15. 15. D. Tyteca, S. P. Van Der, F. Van Bambeke, K. Leys, P. M. Tulkens, P. J. Courtoy, and M. P. Mingeot-Leclercq. Azithromycin, a lysosomotropic antibiotic, impairs fluid-phase pinocytosis in cultured fibroblasts. Eur. J. Cell Biol. 80:466–478 (2001).

    Google Scholar 

  16. 16. J. C. Hooton, C. S. German, S. Allen, M. C. Davies, C. J. Roberts, S. J. Tendler, and P. M. Williams. An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles. Pharm. Res. 21:953–961 (2004).

    Google Scholar 

  17. 17. K. Six, J. Murphy, I. Weuts, D. Q. Craig, G. Verreck, J. Peeters, M. Brewster, and M. G. Van den. Identification of phase separation in solid dispersions of itraconazole and Eudragit E100 using microthermal analysis. Pharm. Res. 20:135–138 (2003).

    Google Scholar 

  18. 18. Y. F. Dufrene and G. U. Lee. Advances in the characterization of supported lipid films with the atomic force microscope. Biochim. Biophys. Acta 1509:14–41 (2000).

    Google Scholar 

  19. 19. A. Engel and D. J. Muller. Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol. 7:715–718 (2000).

    Google Scholar 

  20. 20. M. P. Mingeot-Leclercq, J. Piret, R. Brasseur, and P. M. Tulkens. Effect of acidic phospholipids on the activity of lysosomal phospholipases and on their inhibition by aminoglycoside antibiotics–I. Biochemical analysis. Biochem. Pharmacol. 40:489–497 (1990).

    Google Scholar 

  21. 21. R. D. Kaiser and E. London. Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth. Biochemistry 37:8180–8190 (1998).

    Google Scholar 

  22. 22. B. R. Lentz. Use of fluorescent probes to monitor molecular order and motions within liposome bilayers. Chem. Phys. Lipids 64:99–116 (1993).

    Google Scholar 

  23. 23. S. Kitagawa, M. Matsubayashi, K. Kotani, K. Usui, and F. Kametani. Asymmetry of membrane fluidity in the lipid bilayer of blood platelets: fluorescence study with diphenylhexatriene and analogs. J. Membr. Biol. 119:221–227 (1991).

    Google Scholar 

  24. 24. J. N. Weinstein, S. Yoshikami, P. Henkart, R. Blumenthal, and W. A. Hagins. Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science 195:489–492 (1977).

    Google Scholar 

  25. 25. F. Van Bambeke, M. P. Mingeot-Leclercq, A. Schanck, R. Brasseur, and P. M. Tulkens. Alterations in membrane permeability induced by aminoglycoside antibiotics: studies on liposomes and cultured cells. Eur. J. Pharmacol. 247:155–168 (1993).

    Google Scholar 

  26. 26. G. R. Bartlett. Phosphorus assay in column chromatography. J. Biol. Chem. 234:466–468 (1959).

    CAS  PubMed  Google Scholar 

  27. 27. S. W. Hui, R. Viswanathan, J. A. Zasadzinski, and J. N. Israelachvili. The structure and stability of phospholipid bilayers by atomic force microscopy. Biophys. J. 68:171–178 (1995).

    Google Scholar 

  28. 28. N. C. Santos, E. Ter Ovanesyan, J. A. Zasadzinski, and M. A. Castanho. Reconstitution of phospholipid bilayer by an atomic force microscope tip. Biophys. J. 75:2119–2120 (1998).

    Google Scholar 

  29. 29. O. G. Mouritsen and K. Jorgensen. Dynamical order and disorder in lipid bilayers. Chem. Phys. Lipids 73:3–25 (1994).

    Google Scholar 

  30. 30. M. M. Baksh, M. Jaros, and J. T. Groves. Detection of molecular interactions at membrane surfaces through colloid phase transitions. Nature 427:139–141 (2004).

    Google Scholar 

  31. 31. D. A. Middleton, D. G. Reid, and A. Watts. Combined quantitative and mechanistic study of drug-membrane interactions using a novel 2H NMR approach. J. Pharm. Sci. 93:507–514 (2004).

    Google Scholar 

  32. 32. C. Matos, J. L. Lima, S. Reis, A. Lopes, and M. Bastos. Interaction of antiinflammatory drugs with EPC liposomes: calorimetric study in a broad concentration range. Biophys. J. 86:946–954 (2004).

    Google Scholar 

  33. 33. B. Lopez-Garcia, J. F. Marcos, C. Abad, and E. Perez-Paya. Stabilisation of mixed peptide/lipid complexes in selective antifungal hexapeptides. Biochim. Biophys. Acta 1660:131–137 (2004).

    Google Scholar 

  34. 34. H. Lygre, G. Moe, and H. Holmsen. Interaction of ibuprofen with eukaryotic membrane lipids. Acta Odontol. Scand. 61:303–309 (2003).

    Google Scholar 

  35. 35. P. Suomalainen, C. Johans, T. Soderlund, and P. K. Kinnunen. Surface activity profiling of drugs applied to the prediction of blood-brain barrier permeability. J. Med. Chem. 47:1783–1788 (2004).

    Google Scholar 

  36. 36. A. A. Hidalgo, W. Caetano, M. Tabak, and O. N. Oliveira Jr. Interaction of two phenothiazine derivatives with phospholipid monolayers. Biophys. Chem. 109:85–104 (2004).

    Google Scholar 

  37. 37. T. Harder, P. Scheiffele, P. Verkade, and K. Simons. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141:929–942 (1998).

    Google Scholar 

  38. 38. H. W. Huang, E. M. Goldberg, and R. Zidovetzki. Ceramide induces structural defects into phosphatidylcholine bilayers and activates phospholipase A2. Biochem. Biophys. Res. Commun. 220:834–838 (1996).

    Google Scholar 

  39. 39. T. Kobayashi, M. H. Beuchat, J. Chevallier, A. Makino, N. Mayran, J. M. Escola, C. Lebrand, P. Cosson, T. Kobayashi, and J. Gruenberg. Separation and characterization of late endosomal membrane domains. J. Biol. Chem. 277:32157–32164 (2002).

    Google Scholar 

  40. 40. E. C. Miller and G. M. Helmkamp Jr. Exposure of phosphatidylinositol transfer proteins to sphingomyelin-cholesterol membranes suggests transient but productive interactions with raft-like, liquid-ordered domains. Biochemistry 42:13250–13259 (2003).

    Google Scholar 

  41. 41. V. Schram and T. E. Thompson. Influence of the intrinsic membrane protein bacteriorhodopsin on gel-phase domain topology in two-component phase-separated bilayers. Biophys. J. 72:2217–2225 (1997).

    Google Scholar 

  42. 42. K. H. Kim, T. Ahn, and C. H. Yun. Membrane properties induced by anionic phospholipids and phosphatidylethanolamine are critical for the membrane binding and catalytic activity of human cytochrome P450 3A4. Biochemistry 42:15377–15387 (2003).

    Google Scholar 

  43. 43. M. L. Fanani, S. Hartel, R. G. Oliveira, and B. Maggio. Bidirectional control of sphingomyelinase activity and surface topography in lipid monolayers. Biophys. J. 83:3416–3424 (2002).

    Google Scholar 

  44. 44. L. Yang and M. Glaser. Formation of membrane domains during the activation of protein kinase C. Biochemistry 35:13966–13974 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. 45. K. M. Maloney, M. Grandbois, C. Salesse, D. W. Grainger, and A. Reichert. Membrane microstructural templates for enzyme domain formation. J. Mol. Recognit. 9:368–374 (1996).

    Google Scholar 

  46. 46. E. S. Stuart, W. C. Webley, and L. C. Norkin. Lipid rafts, caveolae, caveolin-1, and entry by Chlamydiae into host cells. Exp. Cell Res. 287:67–78 (2003).

    Google Scholar 

  47. 47. W. B. Huttner and J. Zimmerberg. Implications of lipid microdomains for membrane curvature, budding and fission. Curr. Opin. Cell Biol. 13:478–484 (2001).

    Google Scholar 

  48. 48. M. A. del Pozo, N. B. Alderson, W. B. Kiosses, H. H. Chiang, R. G. Anderson, and M. A. Schwartz. Integrins regulate Rac targeting by internalization of membrane domains. Science 303:839–842 (2004).

    Google Scholar 

  49. 49. C. Bezombes, G. Laurent, and J. P. Jaffrezou. Implication of raft microdomains in drug induced apoptosis. Curr. Med. Chem. Anti-Canc. Agents 3:263–270 (2003).

    Google Scholar 

  50. 50. G. M. Humphries and J. P. Lovejoy. Lateral phase separation of phospholipids as a basis for increased permeability of membranes towards fluorescein and other chemical species. J. Membr. Biol. 80:249–256 (1984).

    Google Scholar 

  51. 51. M. A. Singer and M. K. Jain. Interaction of four local anesthetics with phospholipid bilayer membranes: permeability effects and possible mechanisms. Can. J. Biochem. 58:815–821 (1980).

    Google Scholar 

  52. 52. O. G. Mouritsen and K. Jorgensen. A new look at lipid-membrane structure in relation to drug research. Pharm. Res. 15:1507–1519 (1998).

    Google Scholar 

  53. 53. M. C. Giocondi, P. E. Milhiet, P. Dosset, and C. Le Grimellec. Use of cyclodextrin for AFM monitoring of model raft formation. Biophys. J. 86:861–869 (2004).

    Google Scholar 

  54. 54. D. P. Siegel. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion. Biophys. J. 49:1171–1183 (1986).

    Google Scholar 

  55. 55. M. P. Andrich and J. M. Vanderkooi. Temperature dependence of 1,6-diphenyl-1,3,5-hexatriene fluorescence in phophoslipid artificial membranes. Biochemistry 15:1257–1261 (1976).

    Google Scholar 

  56. 56. B. R. Lentz, Y. Barenholz, and T. E. Thompson. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 1. Single component phosphatidylcholine liposomes. Biochemistry 15:4521–4528 (1976).

    Google Scholar 

  57. 57. B. R. Lentz, Y. Barenholz, and T. E. Thompson. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2 Two-component phosphatidylcholine liposomes. Biochemistry 15:4529–4537 (1976).

    Google Scholar 

  58. 58. F. R. Maxfield. Plasma membrane microdomains. Curr. Opin. Cell Biol. 14:483–487 (2002).

    Google Scholar 

  59. 59. C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton. Lipid rafts reconstituted in model membranes. Biophys. J. 80:1417–1428 (2001).

    Google Scholar 

  60. 60. B. J. Nichols. GM1-containing lipid rafts are depleted within clathrin-coated pits. Curr. Biol. 13:686–690 (2003).

    Google Scholar 

  61. 61. P. Draber and L. Draberova. Lipid rafts in mast cell signaling. Mol. Immunol. 38:1247–1252 (2002).

    Google Scholar 

  62. 62. Y. Barenholz. Cholesterol and other membrane active sterols: from membrane evolution to “rafts”. Prog. Lipid Res. 41:1–5 (2002).

    Google Scholar 

  63. 63. X. M. Li, M. M. Momsen, H. L. Brockman, and R. E. Brown. Sterol structure and sphingomyelin acyl chain length modulate lateral packing elasticity and detergent solubility in model membranes. Biophys. J. 85:3788–3801 (2003).

    Google Scholar 

  64. 64. H. A. Rinia, M. M. Snel, J. P. van der Eerden, and B. de Kruijff. Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett. 501:92–96 (2001).

    Article  Google Scholar 

  65. 65. P. R. Maulik and G. G. Shipley. Interactions of N-stearoyl sphingomyelin with cholesterol and dipalmitoylphosphatidylcholine in bilayer membranes. Biophys. J. 70:2256–2265 (1996).

    Google Scholar 

  66. 66. T. J. McIntosh, S. A. Simon, D. Needham, and C. H. Huang. Structure and cohesive properties of sphingomyelin/cholesterol bilayers. Biochemistry 31:2012–2020 (1992).

    CAS  PubMed  Google Scholar 

  67. 67. F. A. Nezil and M. Bloom. Combined influence of cholesterol and synthetic amphiphillic peptides upon bilayer thickness in model membranes. Biophys. J. 61:1176–1183 (1992).

    Google Scholar 

  68. 68. D. Needham and R. S. Nunn. Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys. J. 58:997–1009 (1990).

    Google Scholar 

  69. 69. E. Evans and D. Needham. Giant vesicle bilayers composed of mixtures of lipids, cholesterol and polypeptides. Thermomechanical and (mutual) adherence properties. Faraday Discuss. Chem. Soc. 267–280 (1986).

    Google Scholar 

  70. 70. J. P. Montenez, F. Van Bambeke, J. Piret, A. Schanck, R. Brasseur, P. M. Tulkens, and M. P. Mingeot-Leclercq. Interaction of the macrolide azithromycin with phospholipids. II. Biophysical and computer-aided conformational studies. Eur. J. Pharmacol. 314:215–227 (1996).

    Google Scholar 

  71. 71. J. P. Montenez, F. Van Bambeke, J. Piret, R. Brasseur, P. M. Tulkens, and M. P. Mingeot-Leclercq. Interactions of macrolide antibiotics (Erythromycin A, roxithromycin, erythromycylamine [Dirithromycin], and azithromycin) with phospholipids: computer-aided conformational analysis and studies on acellular and cell culture models. Toxicol. Appl. Pharmacol. 156:129–140 (1999).

    Google Scholar 

  72. 72. F. Van Bambeke, J. P. Montenez, J. Piret, P. M. Tulkens, P. J. Courtoy, and M. P. Mingeot-Leclercq. Interaction of the macrolide azithromycin with phospholipids. I. Inhibition of lysosomal phospholipase A1 activity. Eur. J. Pharmacol. 314:203–214 (1996).

    Google Scholar 

  73. 73. R. Brasseur, G. Laurent, J. M. Ruysschaert, and P. Tulkens. Interactions of aminoglycoside antibiotics with negatively charged lipid layers. Biochemical and conformational studies. Biochem. Pharmacol. 33:629–637 (1984).

    Google Scholar 

  74. 74. M. P. Mingeot-Leclercq, A. Schanck, M. F. Ronveaux-Dupal, M. Deleers, R. Brasseur, J. M. Ruysschaert, G. Laurent, and P. M. Tulkens. Ultrastructural, physico-chemical and conformational study of the interactions of gentamicin and bis(beta-diethylaminoethylether) hexestrol with negatively-charged phospholipid layers. Biochem. Pharmacol. 38:729–741 (1989).

    Google Scholar 

  75. 75. J. L. Slater, C. H. Huang, and I. W. Levin. Interdigitated bilayer packing motifs: Raman spectroscopic studies of the eutectic phase behavior of the 1-stearoyl-2-caprylphosphatidylcholine/dimyristoyl phosphatidylcholine binary mixture. Biochim. Biophys. Acta 1106:242–250 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-P. Mingeot-Leclercq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berquand, A., Fa, N., Dufrêne, Y. et al. Interaction of the Macrolide Antibiotic Azithromycin with Lipid Bilayers: Effect on Membrane Organization, Fluidity, and Permeability. Pharm Res 22, 465–475 (2005). https://doi.org/10.1007/s11095-004-1885-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-004-1885-8

Key words:

Navigation