Skip to main content
Log in

Anti-Methicillin-Resistant S. aureus Activity of Fruiting Body and Mycelial Culture Extracts of Xylaria longipes Nitschke (Ascomycota)

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Resistance to penicillin by Staphylococcus aureus gave rise to methicillin-resistant S. aureus (MRSA) and the emergence of vancomycin-resistant S. aureus (VRSA) that was reported later. Finding an alternative antimicrobial in the treatment of Staphylococcal infections is the need of the hour. In this context, secondary metabolites of both the fruiting body and mycelia of wood-rotting fungi Xylaria longipes were evaluated for anti-MRSA activity. Thin layer chromatographic (TLC) separation and bioautography of the acetone extract revealed a strong anti-MRSA activity at Rf = 0.69 ± 0.28. The bioactive anti-MRSA compound was partially characterized by Fourier transform infrared (FTIR) spectroscopy and liquid chromatography—tandem mass spectrometry (LC-MS/MS). The analysis suggested anti-MRSA activity could be due to integric acid, eremoxylarin C, or a related compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. M. Wootton, R. Howe, R. Hillman, et al., J. Antimicrob. Chemother., 47(4), 399 – 403 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. P. S. Loomba, J. Taneja and B. Mishra, J. Global Infect. Dis., 2(3), 275 (2010).

    Article  Google Scholar 

  3. A. K. Gautam, J. New Biol. Rep., 2(2), 67 – 70 (2013).

    Google Scholar 

  4. M. J. Alves, I. C. Ferreira, J. Dias, et al., Planta Med., 78(16), 1707 – 1718 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. K. R. Ranadive, M. H. Belsare, S. S. Deokule, et al., J. New Biol. Rep., 2(2), 142 – 162 (2013).

    Google Scholar 

  6. J. G. Vaidya and P. Y. Lamrood, Int. J. Med. Mushrooms, 2(3), 40 (2000).

    Article  Google Scholar 

  7. M. Karaman, N. Mimica-Dukic, P. Knezevic, et al., Int. J. Med. Mushrooms, 11(3), 269 – 279 (2009).

    Article  CAS  Google Scholar 

  8. U. Lindequist, T. H. Niedermeyer and W.-D. Jülich, J. Evid. Based Complementary Altern. Med., 2(3), 285 – 299 (2005).

    Article  Google Scholar 

  9. C. R. Soccol, L. Y. Bissoqui, C. Rodrigues, et al., Int. J. Med. Mushrooms, 18(9), 757 – 767 (2016).

    Article  PubMed  Google Scholar 

  10. R. A. Blanchette, Can. J. Bot., 73(Suppl 1), S999-S1010 (1995).

    Article  CAS  Google Scholar 

  11. F. Song, S. H. Wu, Y. Z. Zhai, et al., Chem. Biodivers., 11(5), 673 – 694 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. M. L. Macías-Rubalcava and R. E. Sánchez-Fernández, World J. Microbiol. Biotechnol., 33(1), 15 (2017).

    Article  PubMed  Google Scholar 

  13. J. Webster and R. W. S. Weber, Introduction to Fungi, Cambridge University Press: New York (2007).

    Book  Google Scholar 

  14. S. E. Helaly, B. Thongbai and M. Stadler, Nat. Prod. Rep., 35, 992 – 1014 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. S. Tokuyama, M. Horikawa, T. Morita, et al., Int. J. Med. Mushrooms, 9(2), 159 – 161 (2007).

    Article  CAS  Google Scholar 

  16. S. Barneche, S. Alborés, G. Borthagaray, et al., Int. J. Med. Mushrooms, 19(3), 243 – 248 (2017).

    Article  PubMed  Google Scholar 

  17. H. Kawagishi, Int. J. Med. Mushrooms, 7(3), 348 – 349 (2005).

    Article  Google Scholar 

  18. S. A. Hashemi, S. A. Khodaparast, R. Zare, et al., Rostaniha, 15, 153 – 166 (2014)

    Google Scholar 

  19. N. Karun and K. Sridhar, Plant Pathol. Quarantine, 5, 83 – 96 (2015).

    Article  Google Scholar 

  20. R. D. Koyani, H. R. Patel, A. M. Vasava, et al., Studies in Fungi, 1(1), 69 – 79 (2016).

    Article  Google Scholar 

  21. A. M. Mshandete and J. Cuff, Afr. J. Biotechnol., 7(24), 4551 – 4562 (2008).

    CAS  Google Scholar 

  22. H. Jork, W. Funk, W. Fischer, et al., in: Thin-Layer Chomatography: Reagents and Detection Methods, Wiley-VCH Verlag GmbH, Weinheim (1990).

    Google Scholar 

  23. I. M. Choma and E. M. Grzelak, J. Chromatogr. A, 1218(19), 2684 – 2691 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, 2nd ed., John Wiley & Sons (2007).

    Book  Google Scholar 

  25. J. D. Rogers, Mycologia, 75, 457 – 467 (1983).

    Article  Google Scholar 

  26. J. D. Rogers, A. N. Miller, and L. N. Vasilyeva, Fungal Divers., 29(9), 107 – 116 (2008).

    Google Scholar 

  27. M. Stadler, J. Fournier, T Læssøe, et al., Mycol. Prog., 7(1), 53 – 73 (2008).

    Article  Google Scholar 

  28. J. Fournier, F. Flessa, D. Peršoh, et al., Mycol. Prog., 10(1), 33 – 52 (2011).

    Article  Google Scholar 

  29. V. Ramesh, U. E. Arivudainambi, A. Thalavaipandian, et al., Int. J. Med. Mushrooms, 14(1), 47 – 53 (2012a).

    Article  PubMed  Google Scholar 

  30. V. P. Sica, E. R. Rees, E. Tchegnon, et al., Front. Microbiol., 7, 544 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. L. G. Zhou and J. Y. Wu, Nat. Prod. Rep., 23(5), 789 – 810 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. J. Z. Chen, H. C. Lo, F. Y. Lin, et al., Int. J. Med. Mushrooms, 16(5), 431 – 447 (2014).

    Article  PubMed  Google Scholar 

  33. S. B. Singh, D. Zink, J. Polishook, et al., Tetrahedron Lett., 40(50), 8775 – 8779 (1999).

    Article  CAS  Google Scholar 

  34. M. Isaka, A. Yangchum, S. Supothina, et al., Phytochem. Lett., 8, 59 – 64 (2014).

    Article  CAS  Google Scholar 

  35. V. Ramesh, K. Santosh, T. D. Anand, et al., Int. J. Med. Mushrooms, 17(10), 1005 – 1017 (2015).

    Article  PubMed  Google Scholar 

  36. M. C. Hung, C. C. Tsai, T. H. Hsu, et al., Int. J. Med. Mushrooms., 17(2), 141 – 150 (2015).

    Article  PubMed  Google Scholar 

  37. K. Orachaipunlap, N. Suwannasai, A. J. Whalley, et al., KMITL Sci. Tech. J., 15(1), 1 – 9 (2015).

    Google Scholar 

  38. C. C. Liaw, S. J. Wu, C. F. Chen, et al., Int. J. Med. Mushrooms, 19(10), 915 – 924 (2017).

    Article  PubMed  Google Scholar 

  39. F. Song, S. H. Wu, Y. Z. Zhai, et al., Chem. Biodivers., 11(5), 673 – 694 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Y. W. Jang, I. K. Lee, Y. S. Kim, et al., J. Antibiot., 60(11), 696 (2007).

    Article  CAS  Google Scholar 

  41. N. Hacioglu, I. Akata, and B. Dulger, Afr. J. Microbiol Res., 5(6), 728 – 730 (2011).

    Google Scholar 

  42. V. Ramesh, C. Karunakaran, and A. Rajendran, Mycology, 3(4), 252 – 257 (2012b).

    CAS  Google Scholar 

  43. V. Ramesh, C. Karunakaran, and A. Rajendran, Curr. Res. Environ. Appl. Mycol., 4(1), 88 – 98 (2014).

    Article  Google Scholar 

  44. K. Canli, I. Akata, and E. M. Altuner, Afr. J. Tradit. Complement. Altern. Med., 13(4), 42 – 46 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. T. Srisapoomi, T. Ichiyanagi, H. Nakajima, et al., Chiang Mai J. Sci., 42(1), 71 – 79 (2014).

    Google Scholar 

  46. G. J. Smith, E. C. Liew, and K. D. Hyde, Fungal Divers., 13, 185 – 218 (2003).

    Google Scholar 

  47. L. G. Bahrin, H. Hopf, P. G. Jones, et al., Beilstein J. Org. Chem., 12, 1065 – 1071 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Y. Shiono and T. Murayama, Z. Naturforsch. B Chem. Sci., 60(8), 885 – 890 (2005).

    CAS  Google Scholar 

  49. M. Isaka, A. Yangchum, S. Supothina, et al., Phytochem. Lett., 8, 59 – 64 (2014).

    Article  CAS  Google Scholar 

  50. G. Schneider, H. Anke, and O. Sterner, Z. Naturforsch. C, 51(11–12), 802 – 806 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keekan, K.K., Ranadive, K.R., Naik, P. et al. Anti-Methicillin-Resistant S. aureus Activity of Fruiting Body and Mycelial Culture Extracts of Xylaria longipes Nitschke (Ascomycota). Pharm Chem J 56, 958–965 (2022). https://doi.org/10.1007/s11094-022-02733-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02733-9

Keywords

Navigation