Skip to main content
Log in

Review of Synthetic Accessibility And Pharmacological Activity of 1,2,4-Triazole and 2-Methylbenzimidazole Derivatives

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The main focus of synthetic chemistry is to develop safe and therapeutically active compounds by employing green synthetic reaction conditions. The azole nuclei have been the center of attention for decades owing to their diverse pharmacological activities. Various synthetic routes have been identified for the synthesis of pharmacologically active derivatives of azoles. Coupling reactions have gained much importance in synthetic chemistry the most basic type of joining two chemical species. The coupling reactions of azoles include alkylation and arylation of the nitrogen atom which yields many compounds possessing significant therapeutical potential, only having limitations related to expensive catalyst systems, bulky ligands, time constraints etc. These limitations can be overcome by employing safe and economical catalyst systems involving nanoparticles. These nanosystems are easy to formulate and offer the advantage of catalyzing the reaction more rapidly with significantly improved yield. In this review, two of the most important azole nuclei—triazole and benzimidazole—are discussed on the basis of their diverse pharmacological properties making them effective drug candidates for further development to overcome emerging diseases. In particular, 1,2,4-triazole and 2-methlybenzimidazole have wide range of therapeutic activities such as anti-inflammatory, antioxidant, antimicrobial, antidiabetic, anthelmintic, analgesic, antihypertensive, anticonvulsant, anticancer, antiulcer, antiprotozoal, antimycobacterial, anti-HIV and antipsychotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Lopez-Alvarado, C. Avendano, and J. C. Menendez, J. Org. Chem., 60(17), 5678 – 5682 (1995).

    Article  CAS  Google Scholar 

  2. N. V. Suramwar, S. R. Thakare, and N. T. Khaty, Org. Chem. Int., 2012 (2012).

  3. L. Zhu, P. Guo, G. Li, et al., J. Org. Chem., 72(22), 8535 – 8538 (2007).

    Article  CAS  Google Scholar 

  4. J. C. Antilla, J. M. Baskin, T. E. Barder, and S. I. Buchwald, J. Org. Chem., 69(17), 5578 – 5587 (2004).

    Article  CAS  Google Scholar 

  5. R. Zhu, L. Xing, X. Wang, et al., Adv. Synth. Catal., 350(9), 1253 – 1257 (2008).

    Article  CAS  Google Scholar 

  6. D. Wang, F. Zhang, D. Kuang, et al., Green Chem., 14(5), 1268 – 1271 (2012).

    Article  CAS  Google Scholar 

  7. V. Sorokin, Mini-Rev. Org. Chem., 5 (4), 323 – 330 (2008).

    Article  CAS  Google Scholar 

  8. H. J. Cristau, P. P. Cellier, J. F. Spindler, et al., Chem. Eur. J., 10(22), 5607 – 5622 (2004).

    Article  CAS  Google Scholar 

  9. G. Manolikakes, Transition-Metal Catalyzed Cross-Coupling Reactions of Functionalized Organometallic Reagents, Nickel-Catalyzed Amination of Aryl Chlorides, and Preparation and Reactions of Organozinc Reagents (2009).

  10. F. Monnie and M. Taillefer, Angew. Chem. Int. Ed., 48(38), 6954 – 6971 (2009).

    Article  Google Scholar 

  11. F. Monnier and M. Taillefer, Angew. Chem. Int. Ed., 47(17), 3096 – 3099 (2008).

    Article  CAS  Google Scholar 

  12. S. Mondal, ChemTexts, 2(4), 1 – 11 (2016).

    Article  CAS  Google Scholar 

  13. A. Correa and C. Bolm, Adv. Synth. Catal., 349(17–18), 2673 – 2676 (2007).

    Article  CAS  Google Scholar 

  14. L. Rout, T. K. Sen, and T. Punniyamurthy, Angew. Chem., 119(29), 5679 – 5682 (2007).

    Article  Google Scholar 

  15. D. Astruc, Chem. Rev. (Washington, DC), 120(2), 461 – 463 (2020).

  16. A. Alshammari, V. N. Kalevaru, and A. Martin, Metal Nanoparticles as Emerging Green Catalysts, Intech Open Book Series, Vol. 10 (2016), pp. 1 – 33.

  17. F. Gao, T. Wang, J. Xiao, et al., Eur. J. Med. Chem., 173, 274 – 281 (2019).

    Article  CAS  Google Scholar 

  18. R. Singh and A. Chouhan, World J. Pharm. Pharm. Sci., 3(8), 874 – 906 (2014).

  19. H. A. El-Sherief, B. G. Youssif, A. H. Abdelazeem, et al., Anti-Cancer Agents Med. Chem., 19(5), 697 – 706 (2019).

    Article  CAS  Google Scholar 

  20. V. J. Ram, A. Sethi, M. Nath, et al., The Chemistry of Heterocycles: Nomenclature and Chemistry of Three to Five Membered Heterocycles, Elsevier (2019).

  21. R. A. Altman, E. D. Koval, and S. L. Buchwald, J. Org. Chem., 72(16), 6190 – 6199 (2007).

    Article  CAS  Google Scholar 

  22. P. Shojaei, B. Mokhtari, and M. Ghorbanpoor, Med. Chem. Res., 28(9), 1359 – 1367 (2019).

    Article  CAS  Google Scholar 

  23. M. Gaba, D. Singh, S. Singh, et al., Eur. J. Med. Chem., 45(6), 2245 – 2249 (2010).

    Article  CAS  Google Scholar 

  24. C. Nguyen Tien, D. Tran Thi Cam, H. Bui Manh, et al., J. Chem., 2016 (2016).

  25. C. Beaulieu, Z. Wang, D. Denis, et al., Bioorg. Med. Chem. Lett., 14(12), 3195 – 3199 (2004).

    Article  CAS  Google Scholar 

  26. A. Tanitame, Y. Oyamada, K. Ofuji, et al., Bioorg. Med. Chem., 12(21), 5515 – 5524 (2004).

    Article  CAS  Google Scholar 

  27. S. Khabnadideh, Z. Rezaei, Y. Ghasemi, et al., Anti-Infect. Agents, 10(1), 26 – 33 (2012).

    Article  CAS  Google Scholar 

  28. M. Suresh, S. B. Jonnalagadda, and C. V. Rao, Orient. J. Chem., 27(1), 127 (2011).

    CAS  Google Scholar 

  29. K. Kamanna, Synthesis and Pharmacological Profile of Benzimidazoles, in: Chemistry and Applications of Benzimidazole and Its Derivatives, IntechOpen Books (2019).

  30. D. Prasad, N. Aggarwal, R. Kumar, et al., Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. (2012).

  31. A. Mobinikhaledi, N. Foroughifar, M. Khanpour, et al., Eur. J. Chem., 1(1), 33 – 36 (2010).

    Article  CAS  Google Scholar 

  32. M. S. Al-Said, M. M. Ghorab, M. S. Al-Dosari, et al., Eur. J. Med. Chem., 46(1), 201 – 207 (2011).

    Article  CAS  Google Scholar 

  33. A. Spasov, I. Yozhitsa, L. Bugaeva, et al., Pharm. Chem. J., 33(5), 232 – 243 (1999).

    Article  CAS  Google Scholar 

  34. Y. Bansal and O. Silakari, Bioorg. Med. Chem., 20(21), 6208 – 6236 (2012).

    Article  CAS  Google Scholar 

  35. A. P. Thomas, C. P. Allott, K. H. Gibson, et al., J. Med. Chem., 35(5), 877 – 885 (1992).

    Article  CAS  Google Scholar 

  36. J. Subbarao, S. Vidhyadhara, and N. Srinivasulu, Int. J. Pharm., 4, 304 – 308 (2014).

    CAS  Google Scholar 

  37. B. Jiang, X. Huang, H. Yao, et al., Org. Biomol. Chem., 12(13), 2114 – 2127 (2014).

    Article  CAS  Google Scholar 

  38. R. C. Corrales, N. B. De Souza, L. S. Pinheiro, et al., Biomed. Pharmacother., 65(3), 198 – 203 (2011).

    Article  CAS  Google Scholar 

  39. J. K. Shneine and Y. H. Alaraji, Int. J. Sci. Res., 9(9b), 9c (2016).

    Google Scholar 

  40. B. K. Prajapati and D. J. Sen, Am. J. Adv. Drug Delivery, 1(1), 151 – 159 (2013).

    Google Scholar 

  41. A. Husain, M. Varshney, M. Rashid, et al., J. Pharm. Res, 4(2), 413 – 419 (2011).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge continuous support by Pharmacy Departments of the Quaid-i-Azam University and the Shifa Tameer-e-Millat University, Islamabad.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Waseem.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waseem, T., Ullah, N. & Rajput, T.A. Review of Synthetic Accessibility And Pharmacological Activity of 1,2,4-Triazole and 2-Methylbenzimidazole Derivatives. Pharm Chem J 56, 943–947 (2022). https://doi.org/10.1007/s11094-022-02730-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02730-y

Keywords

Navigation