Skip to main content
Log in

A Ranged Series of Drug Molecule Fragments Defining Their Neuroavailability

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Computer modelling methods based on “structure-property” relationships (QSPR) allows rational planning of both experimental studies and the effective generation of structures with the ability to cross the blood-brain barrier (BBB). The aim of this work was to create a “structure-property” model based on the simplex presentation of molecules for non-experimental assessment of their ability to cross the BBB and to carry out structural interpretation of the model, taking account of the mutual influences of atoms in the molecule. The simplex method for representing molecular structures was used to evaluate the contributions of different molecular fragments and functional groups to the level of neuroavailability of compounds diffusing across the BBB. The presence of strongly polar and ionogenic groups (carboxyl, carbonyl, phenol hydroxyl) was found to have adverse effects on the ability of substances to penetrate into the brain. The presence of halogen atoms and aromatic fragments had positive influences on transfer of substances through the BBB. The QSPR model constructed here was characterized by satisfactory predictive accuracy as assessed using the RandomForest internal model validation procedure (R2 = 0.54; RMSE = 0.47).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. O. A. Raevskii, S. L. Solodova, O. E. Raevskaya, et al., Biomed. Khimiya, No. 3, 246 – 256 (2012).

  2. O. A. Raevskii, S. L. Solodova, O. E. Raevskaya, and R. Mankhol’d, Khim-Farm. Zh., 46(3), 3 – 8 (2012); Pharm. Chem. J., 46(3), 133 – 138 (2012).

  3. V. E. Kuz’min, A. G. Artemenko, P. G. Polischuk, et al., Mol. Modelling, No. 11, 457 – 467 (2005).

  4. W. L. Jolly and W. B. Perry, J. Am. Chem. Soc., 95(17), 5442 – 5450 (1973).

    Article  CAS  Google Scholar 

  5. R. Wang, Y. Fu and L. Lai, J. Chem. Inform. Computer Sci., 37(3), 615 – 621 (1997).

    Article  CAS  Google Scholar 

  6. B. V. Ioffe, Refractometric Methods in Chemistry [in Russian], Khimiya, Leningrad (1983).

    Google Scholar 

  7. L. Breiman, Random Forests, 45, No. 1, 5 – 32 (2001).

    Google Scholar 

  8. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2012), 1731.

  9. N. A. Kovdienko, P. G. Polishchuk, N. E. Muratov, et al., Molec. Inform., 29(5), 394 – 406 (2010).

    Article  CAS  Google Scholar 

  10. A. G. Artemenko, V. E. Kuz’min, E. N. Muratov, et al., Khim-Farm. Zh., 43(8), 27 – 35 (2009); Pharm. Chem. J., 43(8), 454 – 462 (2009).

  11. P. G. Polishchuk, V. E. Kuz’min, A. G. Artemenko, and E. N. Muratov, Molec. Inform., 32(9 – 10), 843 – 853 (2013).

    Article  CAS  Google Scholar 

  12. M. H. Abraham, A. Ibrahim, et al., J. Pharmaceut. Sci., 95, No. 10, 2091 – 2100 (2006).

    Article  CAS  Google Scholar 

  13. P. Garg and J. Verma, J. Chem. Inform. Model., 46(1), 289 – 297 (2005).

    Article  Google Scholar 

  14. A. Guerra, J. A. Páez, and N. E. Campillo, QSAR Combinatorial Sci., 27(5), 586 – 594 (2008).

    Article  CAS  Google Scholar 

  15. J. Kelder, P. D. Grootenhuis, D. M. Bayada, et al., Pharmaceut. Res., 16(10), 1514 – 1519 (1999).

    Article  CAS  Google Scholar 

  16. D. A. Konovalov, D. Coomans, E. Deconinck, and Y. V. Heyden, J. Chem. Inform. Modeling., 47(4), 1648 – 1656 (2007).

    Article  CAS  Google Scholar 

  17. S. R. Mente and F. Lombardo, J. Computer-Aided Molec. Design, 19(7), 465 – 481 (2005).

    CAS  Google Scholar 

  18. R. Narayanan and S. B. Gunturi, Bioorgan. Med. Chem., 13(8), 3017 – 3028 (2005).

    Article  CAS  Google Scholar 

  19. J. A. Platts, M. H. Abraham, Y. H. Zhao, et al., Eur. J. Med. Chem., 36(9), 719 – 730 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. R. C. Young, R. C. Mitchell, T. H. Brown, et al., J. Med. Chem., 39, 656 – 671 (1988).

    Article  Google Scholar 

  21. M. H. Abraham, H. S. Chadha, and R. C. Mitchell, J. Pharm. Sci., 83, 1257 – 1268 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. J. A. Gratton, M. H. Abraham, Bradbury, et al., J. Pharm. Pharmacol., 49, 1211 – 1216 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 51, No. 1, pp. 35 – 38, January, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polishchuk, P.G., Kosinskaya, A.P., Larionov, V.B. et al. A Ranged Series of Drug Molecule Fragments Defining Their Neuroavailability. Pharm Chem J 51, 35–38 (2017). https://doi.org/10.1007/s11094-017-1553-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-017-1553-z

Keywords

Navigation