Skip to main content

Advertisement

Log in

Development of Functionalized Iron Oxide Nanoparticles Through Non-Thermal Atmospheric Pressure Plasma Assisted Polymerization for Reducing Cytotoxicity

  • Orginal Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The study aims to synthesize and homogeneously functionalize iron oxide nanoparticles (IONPs) using a non-thermal atmospheric pressure (NTAP) plasma for biological applications. IONPs were synthesized using a new NTAP plasma assisted electrolysis technique. The utilization of a unique NTAP plasma rotating reactor allows for a uniform surface functionalization throughout the IONP surface. The precursor used for the functionalization process was acrylic acid (AAc), and it was carried out in response to the applied voltage and monomer flow rate. Optical emission spectroscopy (OES) was used to investigate the reactive species in-situ throughout the functionalization process. Vibrating-sample magnetometry (VSM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and X-ray photo electron spectroscopy (XPS) were used to analyse the changes in the chemical, structural, morphological, and magnetic properties of the untreated and functionalized IONPs. Subsequently, chemical dosimetry and the in vitro metabolic activity assay (MTT) were used to analyse the OH• radical production capacity and toxicity of IONPs. The findings showed that the experimental working conditions had a significant impact on retaining the distinctive COOH functional groups on the surface of functionalized IONPs. The coexistence of the hematite (Fe2O3) and magnetite (Fe3O4) phases is revealed by the untreated and functionalized IONPs, which also exhibit marked super paramagnetic performance and a spherical shape. In the end, the IONPs demonstrated clear nontoxicity when they were functionalized at greater flow rates and reduced applied voltage. The analysis results unequivocally demonstrated the functionalized IONPs’ non-toxicity, highlighting their prospective application in the field of biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Arsalania S, Oliveira J, Guidellia EJ, Araujoc JFDF, Wiekhorstb F, Baffa O (2020) Synthesis of radioluminescent iron oxide nanoparticles functionalized by anthracene for biomedical applications. Colloids Surf a 602:125105

    Article  Google Scholar 

  2. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chemie Int Ed 46(8):1222–1244

    Article  CAS  Google Scholar 

  3. Lu H, Yi G, Zhao S, Chen D, Guo L-H, Cheng J (2004) Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties. J Mater Chem 14(8):1336–1341

    Article  CAS  Google Scholar 

  4. Weimuller MG, Zeisberger M, Krishnan KM (2009) Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater 321(13):1947–1950

    Article  Google Scholar 

  5. Kayal S, Ramanujan R (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C 30(3):484–490

    Article  CAS  Google Scholar 

  6. Kandasamy PG, Soni S, Sushmita K, Veerapu NS, Bose S, Maity D (2019) One-step synthesis of hydrophilic functionalized and cytocompatible superparamagnetic iron oxide nanoparticles (SPIONs) based aqueous ferrofluids for biomedical applications author links open overlay. J Mol Liq 274:653–663

    Article  CAS  Google Scholar 

  7. Gambhir RP, Rohiwal SS, Tiwari AP (2022) Multifunctional surface functionalized magnetic iron oxide nanoparticles for biomedical applications: a review. Appl Surf Sci Adv 11:100303

    Article  Google Scholar 

  8. AL-Harbi LM, Mohamed SA, Darwish (2022) Functionalized iron oxide nanoparticles: synthesis through ultrasonic-assisted co-precipitation and performance as hyperthermic agents for biomedical applications. Heliyon 8(6):e09654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nahar Y, Rahman MA, Hossain MK, Sharafat MK, Karim MR, Elaissari A, Ochiai B, Ahmad H, Rahman MM (2020) A facile one-pot synthesis of poly(acrylic acid)-functionalized magnetic iron oxide nanoparticles for suppressing reactive oxygen species generation and adsorption of biocatalyst. Mater Res Express 7:016102

    Article  CAS  Google Scholar 

  10. Toyokuni S (1996) Iron induced carcinogenesis: the role of redox regulation. Free Radic Biol Med 20:553–566

    Article  CAS  PubMed  Google Scholar 

  11. Ghosh P, Kumar C, Samatha A N, Ray S, (2012),Comparison of a new immobilized Fe3+ catalyst with homogeneous Fe3+–H2O2 system for degradation of 2,4‐dinitrophenol, J Chem Technol Biotechnol, 87: 914-923

  12. Faruq M, Yusof N A, (2014) Surface ligand influenced free radical protection of superparamagnetic iron oxide nanoparticles (SPIONs) toward H9c2 cardiac cells, J.Mater Sci, 49: 6290–6301

  13. Elrahmana AAA, Mansour FR (2019) Targeted magnetic iron oxide nanoparticles: Preparation, functionalization and biomedical application. J Drug Deliv Sci Tec 52:702–712

    Article  Google Scholar 

  14. Borcia G, Anderson CA, Brown NMD (2004) The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge, part I. Appl Surf Sci 221:203–214

    Article  CAS  Google Scholar 

  15. Akishev Y, Grushin M, Dyatko N, Kochetov I, Napartovich A, Trushkin N, Duc TM, Descours S (2008) Studies on cold plasma–polymer surface interaction by example of PP- and PET-films. J Phys D Appl Phys 41:235203

    Article  Google Scholar 

  16. Tanasa E, Zaharia C, Radu IC, Surdu VA, Vasile BS, Damian CM, Andronescu E (2019) Novel nanocomposites based on functionalized magnetic nanoparticles and polyacrylamide: Preparation and complex characterization. J Nanomater 9:1384

    Article  CAS  Google Scholar 

  17. Zhang F, Yu S, Hou G, Xu N, Wu Z (2015) Lu Yue, Miniemulsion-based assembly of iron oxide nanoparticles and synthesis of magnetic polymer nanospheres. Colloid Polym Sci 293:1893–1902

    Article  CAS  Google Scholar 

  18. Faber H, Hirschmann J, Klaumunzer M, Braunschweig B, Peukert W, Halik M (2012) ACS Appl Mater Interfaces 4(3):1693–1696

    Article  CAS  PubMed  Google Scholar 

  19. Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C (2008) Non-thermal plasma treatment of textiles. Surf Coat Technol 202:3427–3449

    Article  CAS  Google Scholar 

  20. N. Encinas, B. Díaz-Benito, J. Abenojar, M.A. Martínez, Surf. Coat. Technol. 205 (2010) 396.2089.

    Article  CAS  Google Scholar 

  21. Kholodkov I, Biederman H, Slavınsk D, Choukourov A (2003) Vacuum 70:505

    Article  CAS  Google Scholar 

  22. Popelka A, Kronek J, Novak I, Kleinova A, Miusík M, Spírkova M, Omastova M (2014) Vacuum 100:53

    Article  CAS  Google Scholar 

  23. Navaneetha Pandiyaraj K, Karuppusamy M, Jayamurugan P, Misra VC, Ghorui S, Saravanan P, Nadagouda MN, Unnikrishnane BS, Gopinath P, Pichumani M (2024) Rouba Ghobeira, Nathalie De Geyter, Rino Morent, Adv. Powder Technol, 35 104441

  24. Morent R, De Geyter N, Vlierberghe SV, Beaurain A, Dubruel P, Payenc E (2011) Influence of operating parameters on plasma polymerization of acrylic acid in amesh-to-plate dielectric barrier discharge. Prog Org Coat 70:336–341

    Article  CAS  Google Scholar 

  25. Rutnakornpituk N, Puangsin P Theamdee Band Rutnakornpituk U2011 Wichai, Polymer 52987

  26. Kanazawa S, Furuki T, Nakaji T, Akamine S, Ichiki R (2012) Measurement of OH radicals in aqueous solution produced by atmospheric-pressure LF plasma jet. Int J Plasma Environ Sci Technol 6:166–171

    Google Scholar 

  27. Pandiyaraj KN, Vasu D, Ghobeira R, Tabaei PSE, De Geyter N, Morent R, Pichumani M, Padmanabhanan PVA, Deshmukh RR (2021) Dye wastewater degradation by the synergetic effect of an atmospheric pressure plasma treatment and the photocatalytic activity of plasma-functionalized Cu-TiO2 nanoparticles. J Hazard Mater 405:124264

    Article  CAS  PubMed  Google Scholar 

  28. Kim YH, Hong YJ, Baik KY, Kwon GC, Choi JJ, Cho GS, Uhm HS, Kim DY, Choi EH (2014) Measurement of reactive hydroxyl radical species inside the biosolutions during non-thermal atmospheric pressure plasma jet bombardment onto the solution. Plasma Chem Plasma Process 34:457–472

    Article  CAS  Google Scholar 

  29. National Institute of Standard and Technology (NIST Database) (https://physics.nist.gov/PhysRefData/Handbook/periodictable.htm)

  30. Shaw P, Kumar N, Kwak HS (2018) Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species. Sci Rep 8:11268

    Article  PubMed  PubMed Central  Google Scholar 

  31. Attri P, Kim Y, Park D et al (2015) Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Sci Rep 5:9332

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chang Y-J, Lin C-H, Huang C (2016) Plasma polymerization of acrylic acid onto polystyrene by cyclonic plasma at atmospheric pressure Jpn. J Appl Phys 55:01AB05

    Article  Google Scholar 

  33. Pandiyaraj KN, Ramkumar MC, Arun Kumar A, Vasu D, Padmanabhan PVA, Tabaei PSE, Cools P, De Geyter N, Morent R, Jaganathan SK (2019) Development of phosphor containing functional coatings via cold atmospheric pressure plasma jet - study of various operating parameters. Appl Surf Sci 488:343–350

    Article  CAS  Google Scholar 

  34. Beamson G, Briggs D (1992) High Resolution XPS of Organic polymers: the ScientaESCA300 database. Wiley, New York

    Google Scholar 

  35. Yasuda H (1981) J Polym Sci Macromol Rev 16:199–293

    Article  CAS  Google Scholar 

  36. De Geyter N, Morent R, Vlierberghe SV, Dubruel P, Leys C, Gengembre L, Schacht E, Payen E (2009) Deposition of polymethyl methacrylate on polypropylene substrates using an atmospheric pressure dielectric barrier discharge. Prog Org Coat 64(2–3):230–237

    Article  Google Scholar 

  37. Pandiyaraj KN, Arun Kumar A, RamKumar MC, Padmanabhan PVA, Trimukhe AM, Deshmukh RR, Cools P, Morent R, De Geyter N, Kumar V, Gopinath P, Jaganathan SK (2018) Influence of operating parameters on development of polyethylene oxide like coatings on the surfaces of polypropylene films by atmospheric pressure cold plasma jet-assisted polymerization to enhance their antifouling properties. J Phys Chem Solid 123:76–86

    Article  CAS  Google Scholar 

  38. Ruíz-Baltazar AJ (2021) Sonochemical activation-assisted biosynthesis of Au/ Fe3O4 nanoparticles and sonocatalytic degradation of methyl orange. Ultrason Sonochem 73:105521

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tayefeha A, Poursalehi R, Wiesnerb M, Mousavi SA (2019) XPS study of size effects of Fe3O4 nanoparticles on crosslinking degree of magnetic TFN membrane. Polym Test 73:232–241

    Article  Google Scholar 

  40. Ni X, Zhang J, Zhao L, Wang F, He H, Dramou P (2022) Study of the solvothermal method time variation effects on magnetic iron oxide nanoparticles (Fe3O4) features. J Phys Chem Solid 169:110855

    Article  CAS  Google Scholar 

  41. V.E. Noval, J.G. Carriazo, Fe3O4-TiO2 and Fe3O4-SiO2 Core-shell powders synthesized from industrially processed magnetite (Fe3O4) Microparticles, Mater. Res. 22 (2019) e20180660.

    Article  Google Scholar 

  42. M. Ayesha, A. Imran, I. Haider, S. Shahzadi, A. Moeen, W. Ul-Hami, A. Nabgan, T. Shahzadi, M. Alshahrani, Ikram, Polyvinylpyrrolidone and chitosan-coated magnetite (Fe3O4) nanoparticles for catalytic and antimicrobial activity with molecular docking analysis, J. Environ. Chem. Eng. 11 (2023) 110088.

    Article  CAS  Google Scholar 

  43. J. Yu, B. Wang, Q. Lu, L. Xiao, X. Ma, Y. Feng, Y. Qian, Fabrication of Fe3O4 nanoparticles by using cathode glow discharge electrolysis plasma and its electrochemical properties, Electrochim. Acta 427 (2022) 140843.

    Article  CAS  Google Scholar 

  44. N.K. Yetim, F. Kurs¸ UN. Baysak, M.M. Koc¸ and D. Nartop Characterization of magnetic Fe3O4@SiO2 nanoparticles with fluorescent properties for potential multipurpose imaging and theranostic applications, J Mater Sci: Mater Electron, 31 (2020)18278–18288.

    Google Scholar 

  45. M. Simeonov, A.A. Apostolov, M. Georgieva, D. Tzankov and E. Vassileva, Poly(acrylic acid-co-acrylamide)/Polyacrylamide pIPNs/Magnetite Composite Hydrogels: Synthesis and Characterization, Gels 9(5) (2023) 365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. T. Yeamsuksawat, Hui Zhao, Jun Liang, Characterization and antimicrobial performance of magnetic Fe3O4@Chitosan@Ag nanoparticles synthesized via suspension technique, Mater. Today Commun. 28 (2021) 102481.

    Article  CAS  Google Scholar 

  47. B Wang, J J Yin, X Y Zhou, Physicochemical origin for free radical generation of iron oxide nanoparticles in biomicroenvironment: catalytic activities mediated by surface chemical states, J. Phys. Chem. C, 117(1) (2013) 383-392.

    Article  Google Scholar 

  48. N Singh, B Manshian, and G J S Jenkins, NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomater. 30 (23-24) (2009) 3891-3914.

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author Dr. K. Navaneetha Pandiyaraj would like to acknowledge the Department of Atomic Energy-Board of Research in Nuclear Sciences (DAE-BRNS) (57/14/01/2022-BRNS/34014, dated 01.06.2022), Government of India, for the financial support provided to conduct this research. The author M Pichumani is grateful to The Management, Sri Ramakrishna Engineering College, Coimbatore, India.

Author information

Authors and Affiliations

Authors

Contributions

K.N -Wrote the main manuscript M.K-Methodology V.C.M- Formal analysis and Funding S.G- Formal analysis and Funding PS-Methodology and Formal analysis M.N.N-Methodology and Formal analysis M.P-Methodology and Formal analysis S.P.S-Methodology and Formal analysis V.Z-Methodology and Formal analysis.

Corresponding author

Correspondence to K. Navaneetha Pandiyaraj.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandiyaraj, K.N., Karuppusamy, M., Misra, V.C. et al. Development of Functionalized Iron Oxide Nanoparticles Through Non-Thermal Atmospheric Pressure Plasma Assisted Polymerization for Reducing Cytotoxicity. Plasma Chem Plasma Process 45, 133–159 (2025). https://doi.org/10.1007/s11090-024-10521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-024-10521-4

Keywords

Profiles

  1. Vandana Chaturvedi Misra