Skip to main content

Advertisement

Log in

Low Temperature Plasma Treatment of Rat Blood is Accompanied by Platelet Aggregation

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Growing evidence has suggested the feasibility and effectiveness of blood coagulation with low temperature plasma (LTP) at atmospheric pressure. In the present study we examined morphological changes and contents released out from platelet after LTP treatment to investigate the mechanism of LTP accelerate blood coagulation. Changes of isolated rat platelets treated with LTP had been detected by flow cytometry, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Additionally, a scheme that the mixture of different color fluorescent stained platelets treated by LTP and then detected by flow cytometry had proposed to quantitatively assess plasma triggered platelets aggregation. Furthermore, we had used label free quantitative mass spectrometry to identify changes in the supernatant proteome released from LTP treated platelets. On the surface of LTP treatment hastened whole rat blood clots, a layer of semi-transparent film had formed, which had been demonstrated to form from platelet-like membrane structure by ultrastructural analysis with TEM. Flow cytometry combined with fluorescent staining confirmed that LTP treatment promoted platelet aggregation. The observation of plasma treated stained platelets under fluorescence confocal microscopy also confirmed this judgment. We separated the supernatant from the platelets treated with LTP, and then analyzed their differences using mass spectrometry. Compared with control group, Gene ontology (GO) analysis showed that the concentration of 16 protein molecules in the experimental group was increased. LTP treatment can promotes platelet aggregation and the release of platelet activating proteins, which is the potential mechanism of speeding up blood coagulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rndt S, Unger P, Wacker E et al (2013) Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS ONE. https://doi.org/10.1371/journal.pone.0079325

    Article  Google Scholar 

  2. Laroussi M, Lu X, Keidar M (2017) Perspective: the physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. J Appl Phys 122:1–19. https://doi.org/10.1063/1.4993710

    Article  CAS  Google Scholar 

  3. Laroussi M (2005) Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Process Polym 2:391–400. https://doi.org/10.1002/ppap.200400078

    Article  CAS  Google Scholar 

  4. McCombs G, Darby M (2010) New discoveries and directions for medical, dental and dental hygiene research: low temperature atmospheric pressure plasma. Int J Dent Hyg 8:10–15. https://doi.org/10.1111/j.1601-5037.2009.00386.x

    Article  CAS  PubMed  Google Scholar 

  5. Heinlin J, Morfill G, Landthaler M et al (2010) Plasma medicine: possible applications in dermatology. JDDG J Deutsch Dermatol Ges 8:968–976. https://doi.org/10.1111/j.1610-0387.2010.07495.x

    Article  Google Scholar 

  6. Barekzi N, Laroussi M (2013) Effects of low temperature plasmas on cancer cells. Plasma Process Polym 10:1039–1050

    Article  CAS  Google Scholar 

  7. Daeschlein G, Napp M, von Podewils S et al (2014) In vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process Polym 11:175–183. https://doi.org/10.1002/ppap.201300070

    Article  CAS  Google Scholar 

  8. Yan K, Jin Q, Zheng C et al (2018) Pulsed cold plasma-induced blood coagulation and its pilot application in stanching bleeding during rat hepatectomy. Plasma Sci Technol. https://doi.org/10.1088/2058-6272/aa9b79

    Article  Google Scholar 

  9. Beardsley DJS, Tang C, Chen BG et al (2003) The disulfide-rich region of platelet glycoprotein (GP) IIIa contains hydrophilic peptide sequences that bind anti-GPIIIa autoantibodies from patients with immune thrombocytopenic purpura (ITP). Biophys Chem 105:503–515. https://doi.org/10.1016/S0301-4622(03)00111-X

    Article  CAS  PubMed  Google Scholar 

  10. Nomura Y, Takamatsu T, Kawano H et al (2017) Investigation of blood coagulation effect of nonthermal multigas plasma jet in vitro and in vivo. J Surg Res 219:302–309. https://doi.org/10.1016/j.jss.2017.06.055

    Article  PubMed  Google Scholar 

  11. García-Alcantara E, López-Callejas R, Morales-Ramírez PR et al (2013) Accelerated mice skin acute wound healing in vivo by combined treatment of argon and helium plasma needle. Arch Med Res 44:169–177. https://doi.org/10.1016/j.arcmed.2013.02.001

    Article  PubMed  Google Scholar 

  12. Miyamoto K, Ikehara S, Sakakita H, Ikehara Y (2017) Low temperature plasma equipment applied on surgical hemostasis and wound healings. J Clin Biochem Nutr 60:25–28. https://doi.org/10.3164/jcbn.16-60

    Article  CAS  PubMed  Google Scholar 

  13. Ueda M, Yamagami D, Watanabe K et al (2015) Cover picture: plasma process. polym. 12∕2015. Plasma Process Polym 12:1329–1329. https://doi.org/10.1002/ppap.201570043

    Article  Google Scholar 

  14. Graves DB (2017) Mechanisms of plasma medicine: coupling plasma physics, biochemistry, and biology. IEEE Trans Radiat Plasma Med Sci 1:281–292. https://doi.org/10.1109/trpms.2017.2710880

    Article  Google Scholar 

  15. Yadav S, Storrie B (2017) The cellular basis of platelet secretion: emerging structure/function relationships. Platelets 28:108–118. https://doi.org/10.1080/09537104.2016.1257786

    Article  CAS  PubMed  Google Scholar 

  16. Broos K, Feys HB, De Meyer SF et al (2011) Platelets at work in primary hemostasis. Blood Rev 25:155–167. https://doi.org/10.1016/J.BLRE.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  17. Kalghatgi SU, Fridman G, Cooper M et al (2007) Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma. IEEE Trans Plasma Sci 35:1559–1566. https://doi.org/10.1109/TPS.2007.905953

    Article  CAS  Google Scholar 

  18. Kuo SP, Tarasenko O, Chang J et al (2009) Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding. New J Phys. https://doi.org/10.1088/1367-2630/11/11/115016

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yousfi M, Merbahi N, Pathak A, Eichwald O (2014) Low-temperature plasmas at atmospheric pressure: toward new pharmaceutical treatments in medicine. Fundam Clin Pharmacol 28:123–135. https://doi.org/10.1111/fcp.12018

    Article  CAS  PubMed  Google Scholar 

  20. Bekeschus S, Brüggemeier J, Hackbarth C et al (2017) Platelets are key in cold physical plasma-facilitated blood coagulation in mice. Clin Plasma Med 7–8:58–65. https://doi.org/10.1016/J.CPME.2017.10.001

    Article  Google Scholar 

  21. Bekeschus S, Brüggemeier J, Hackbarth C et al (2018) The feed gas composition determines the degree of physical plasma-induced platelet activation for blood coagulation. Plasma Sour Sci Technol. https://doi.org/10.1088/1361-6595/aaaf0e

    Article  Google Scholar 

  22. Liu Z, Zheng C, Yan K et al (2016) A microsecond-pulsed cold plasma jet for medical application. Plasma Med 6:179–191. https://doi.org/10.1615/plasmamed.2016019251

    Article  Google Scholar 

  23. Wang XF, Fang QQ, Jia B et al (2020) Potential effect of non-thermal plasma for the inhibition of scar formation: a preliminary report. Sci Rep 10:1–10. https://doi.org/10.1038/s41598-020-57703-6

    Article  CAS  Google Scholar 

  24. Cuyper IM de, Meinders M, Vijver E van de et al (2013) A novel flow cytometry–based platelet aggregation assay. 121:70–81. https://doi.org/10.1182/blood-2012-06-437723. I.M.D.C

  25. Mi H, Huang X, Muruganujan A et al (2017) PANTHER version 11: expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements. Nucl Acids Res 45:D183–D189. https://doi.org/10.1093/nar/gkw1138

    Article  CAS  PubMed  Google Scholar 

  26. Miyamoto K, Ikehara S, Takei H et al (2016) Red blood cell coagulation induced by low-temperature plasma treatment. Arch Biochem Biophys 605:95–101. https://doi.org/10.1016/J.ABB.2016.03.023

    Article  CAS  PubMed  Google Scholar 

  27. Takamatsu T, Uehara K, Sasaki Y et al (2014) Investigation of reactive species using various gas plasmas. RSC Adv 4:39901–39905. https://doi.org/10.1039/C4RA05936K

    Article  CAS  Google Scholar 

  28. Hristov M, Zernecke A, Bidzhekov K et al (2007) Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ Res 100:590–597. https://doi.org/10.1161/01.RES.0000259043.42571.68

    Article  CAS  PubMed  Google Scholar 

  29. Ikehara S, Sakakita H, Ishikawa K et al (2015) Plasma blood coagulation without involving the activation of platelets and coagulation factors. Plasma Process Polym 12(12):1348–1353

    Article  CAS  Google Scholar 

  30. Ke Z, Huang Q (2016) Haem-assisted dityrosine-cross-linking of fibrinogen under non-thermal plasma exposure: one important mechanism of facilitated blood coagulation. Sci Rep 6:1–8. https://doi.org/10.1038/srep26982

    Article  CAS  Google Scholar 

  31. Bekeschus S, Poschkamp B, van der Linde J (2020) Medical gas plasma promotes blood coagulation via platelet activation. Biomaterials. https://doi.org/10.1016/j.biomaterials.2020.120433

    Article  Google Scholar 

  32. Kim J, Kim JH, Chang B et al (2016) Hemorheological alterations of red blood cells induced by non-thermal dielectric barrier discharge plasma. Appl Phys Lett. https://doi.org/10.1063/1.4967451

    Article  PubMed  PubMed Central  Google Scholar 

  33. Boyanova D, Nilla S, Birschmann I et al (2012) PlateletWeb: a systems biologic analysis of signaling networks in human platelets. Blood 119:e22–e34. https://doi.org/10.1182/blood-2011-10-387308.secretome

    Article  CAS  PubMed  Google Scholar 

  34. Maynard DM, Heijnen HFG, Horne MK et al (2007) Proteomic analysis of platelet α-granules using mass spectrometry. J Thromb Haemost 5:1945–1955. https://doi.org/10.1111/j.1538-7836.2007.02690.x

    Article  CAS  PubMed  Google Scholar 

  35. Schmidt A, Bekeschus S, Wende K et al (2017) A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Exp Dermatol 26:156–162. https://doi.org/10.1111/exd.13156

    Article  CAS  PubMed  Google Scholar 

  36. Lu P, Ziuzina D, Cullen PJ, Bourke P (2018) Cover picture plasma process polym. 12/2018. Plasma Process Polym. https://doi.org/10.1002/ppap.201870026

Download references

Acknowledgements

Thanks for the technical support by the Core Facilities, Zhejiang University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, B., Liu, J., Yin, S. et al. Low Temperature Plasma Treatment of Rat Blood is Accompanied by Platelet Aggregation. Plasma Chem Plasma Process 41, 955–972 (2021). https://doi.org/10.1007/s11090-021-10176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10176-5

Keywords

Navigation