Skip to main content
Log in

Investigation of the Electrode Erosion in Pin-to-Liquid Discharges and Its Influence on Reactive Oxygen and Nitrogen Species in Plasma-Activated Water

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Although the erosion of high-voltage electrodes was extensively studied in in-liquid electrical discharges, to the best of our knowledge, the erosion produced by discharges generated above water has been barely explored. This work studies the erosion of three pin electrode materials (hafnium, copper, stainless steel) in two gas atmospheres (oxygen, air). They are powered by repetitive high-voltage nanosecond pulses, producing pulsed streamer discharges above water. The electrode material does not affect the energy deposited per pulse. The surfaces of all three electrodes erode, releasing metal particles into the water. Stainless steel is the material with least erosion, in both gas atmospheres. Overall, copper in air shows the highest erosion. We also examine how the metals released into the water affect three long-lived reactive oxygen and nitrogen species (RONS), H2O2, NO2 and NO3, during four weeks post-discharge. After treatment with air plasma, NO2 and NO3 are measured in the treated water, but H2O2 is not detected. NO2 is almost completely converted into NO3 after two weeks. H2O2 is measured for samples prepared with an oxygen plasma. Neither the RONS nor the conductivity of plasma-treated water are significantly affected by the use of different electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Locke BR, Lukeš P (2018) Special issue: plasma and liquids. Plasma Process Polym 15:1815062. https://doi.org/10.1002/ppap.201815062

    Article  CAS  Google Scholar 

  2. Bruggeman PJ, Kushner MJ, Locke BR et al (2016) Plasma–liquid interactions: a review and roadmap. Plasma Sources Sci Technol 25:053002. https://doi.org/10.1088/0963-0252/25/5/053002

    Article  CAS  Google Scholar 

  3. Puač N, Gherardi M, Shiratani M (2018) Plasma agriculture: a rapidly emerging field. Plasma Process Polym 15:1–5. https://doi.org/10.1002/ppap.201700174

    Article  CAS  Google Scholar 

  4. Malik MA (2010) Water purification by plasmas: which reactors are most energy efficient? Plasma Chem Plasma Process 30:21–31. https://doi.org/10.1007/s11090-009-9202-2

    Article  CAS  Google Scholar 

  5. Stratton GR, Bellona CL, Dai F et al (2015) Plasma-based water treatment: conception and application of a new general principle for reactor design. Chem Eng J 273:543–550. https://doi.org/10.1016/j.cej.2015.03.059

    Article  CAS  Google Scholar 

  6. Kozakova Z, Klimova EJ, Obradovic BM et al (2018) Comparison of liquid and liquid-gas phase plasma reactors for discoloration of azo dyes: analysis of degradation products. Plasma Process Polym. https://doi.org/10.1002/ppap.201700178

    Article  Google Scholar 

  7. Lukes P, Locke BR, Brisset JL (2012) Aqueous-phase chemistry of electrical discharge plasma in water and in gas-liquid environments. In: Parvulescu VI, Magureanu M, Lukes P (eds) Plasma chemistry and catalysis in gases and liquids, 1st edn. Wiley-VCH Verlag GmbH & Co, KGaA, pp 243–308

    Chapter  Google Scholar 

  8. Velikonja J, Bergougnou MA, Castle GSP et al (2001) Co-generation of ozone and hydrogen peroxide by dielectric barrier AC discharge in humid oxygen. Ozone Sci Eng 23:467–478. https://doi.org/10.1080/01919510108962031

    Article  CAS  Google Scholar 

  9. Traylor MJ, Pavlovich MJ, Karim S et al (2011) Long-term antibacterial efficacy of air plasma-activated water. J Phys D Appl Phys 44:472001. https://doi.org/10.1088/0022-3727/44/47/472001

    Article  CAS  Google Scholar 

  10. Boehm D, Heslin C, Cullen PJ, Bourke P (2016) Cytotoxic and mutagenic potential of solutions exposed to cold atmospheric plasma. Sci Rep 6:21464. https://doi.org/10.1038/srep21464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shen J, Tian Y, Li Y et al (2016) Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Sci Rep. https://doi.org/10.1038/srep28505

    Article  PubMed  PubMed Central  Google Scholar 

  12. Foster JE (2017) Plasma-based water purification: challenges and prospects for the future. Phys Plasmas 24:0–16. https://doi.org/10.1063/1.4977921

    Article  CAS  Google Scholar 

  13. Dobrin D, Bradu C, Magureanu M et al (2013) Degradation of diclofenac in water using a pulsed corona discharge. Chem Eng J 234:389–396. https://doi.org/10.1016/j.cej.2013.08.114

    Article  CAS  Google Scholar 

  14. Tampieri F, Giardina A, Bosi FJ et al (2018) Removal of persistent organic pollutants from water using a newly developed atmospheric plasma reactor. Plasma Process Polym. https://doi.org/10.1002/ppap.201700207

    Article  Google Scholar 

  15. Mededovic Thagard S, Stratton GR, Dai F et al (2017) Plasma-based water treatment: development of a general mechanistic model to estimate the treatability of different types of contaminants. J Phys D Appl Phys 50:014003. https://doi.org/10.1088/1361-6463/50/1/014003

    Article  CAS  Google Scholar 

  16. Oh JS, Szili EJ, Gaur N et al (2016) How to assess the plasma delivery of RONS into tissue fluid and tissue. J Phys D Appl Phys 49:304005. https://doi.org/10.1088/0022-3727/49/30/304005

    Article  CAS  Google Scholar 

  17. Tanaka H, Mizuno M, Ishikawa K et al (2018) Molecular mechanisms of non-thermal plasma-induced effects in cancer cells. Biol Chem 400:87–91. https://doi.org/10.1515/hsz-2018-0199

    Article  CAS  PubMed  Google Scholar 

  18. Foster JE, Mujovic S, Groele J (2018) Towards high throughput plasma based water purifiers: design considerations and the pathway towards practical application. J Phys D Appl Phys 51:293001. https://doi.org/10.1088/1361-6463/aac816

    Article  CAS  Google Scholar 

  19. Lukeš P, Člupek M, Babický V et al (2006) Erosion of needle electrodes in pulsed corona discharge in water. Czech J Phys 56:916–924. https://doi.org/10.1007/s10582-006-0304-2

    Article  Google Scholar 

  20. Mededović S, Locke BR (2006) Platinum catalysed decomposition of hydrogen peroxide in aqueous-phase pulsed corona electrical discharge. Appl Catal B Environ 67:149–159. https://doi.org/10.1016/j.apcatb.2006.05.001

    Article  CAS  Google Scholar 

  21. Holzer F, Locke BR (2008) Influence of high voltage needle electrode material on hydrogen peroxide formation and electrode erosion in a hybrid gas-liquid series electrical discharge reactor. Plasma Chem Plasma Process 28:1–13. https://doi.org/10.1007/s11090-007-9107-x

    Article  CAS  Google Scholar 

  22. Kirkpatrick MJ, Locke BR (2006) Research notes: effects of platinum electrode on hydrogen, oxygen, and hydrogen peroxide formation in aqueous phase pulsed corona electrical discharge. Ind Eng Chem Res 45:2138–2142. https://doi.org/10.1021/ie0511480

    Article  CAS  Google Scholar 

  23. Lukes P, Clupek M, Babicky V et al (2011) The catalytic role of tungsten electrode material in the plasmachemical activity of a pulsed corona discharge in water. Plasma Sources Sci Technol 20:034011. https://doi.org/10.1088/0963-0252/20/3/034011

    Article  CAS  Google Scholar 

  24. Liu Y, Li Z, Luo Q et al (2016) Comparison and evaluation of electrode erosion under high-pulsed current discharges in air and water mediums. IEEE Trans Plasma Sci 44:1169–1177. https://doi.org/10.1109/TPS.2016.2578343

    Article  CAS  Google Scholar 

  25. Goryachev VL, Ufimtsev AA, Khodakovskii AM (1997) Mechanism of electrode erosion in pulsed discharges in water with a pulse energy of ~ 1. J. Tech Phys Lett 23:386–387. https://doi.org/10.1134/1.1261862

    Article  Google Scholar 

  26. Parkansky N, Vegerhof A, Alterkop BA et al (2012) Submerged arc breakdown of methylene blue in aqueous solutions. Plasma Chem Plasma Process 32:933–947. https://doi.org/10.1007/s11090-012-9385-9

    Article  CAS  Google Scholar 

  27. Kolikov VA, Kurochkin VE, Panina LK, Rutberg AFG (2005) Pulse electric discharges and prolonged microbial resistance of water. Dokl Biol Sci 403:279–281

    Article  CAS  Google Scholar 

  28. Blokhin VI, Vysikailo FI, Dmitriev KI, Efremov NM (1999) Systems with different electrode materials for treatment of water by a pulsed electric discharge. High Temp 37:998–999

    Google Scholar 

  29. Mededovic S, Locke BR (2007) The role of platinum as the high voltage electrode in the enhancement of Fenton’s reaction in liquid phase electrical discharge. Appl Catal B Environ 72:342–350. https://doi.org/10.1016/j.apcatb.2006.11.014

    Article  CAS  Google Scholar 

  30. Rutberg PG, Gorjachev V, Gorjachev VL, Kolikov VA et al (2010) Main results of investigations of pulsed electric discharges in water carried out at IEE RAS. High Temp Mater Process 14:175–184

    Article  CAS  Google Scholar 

  31. Efremov NM, Yu Adamiak B, Blochin VI et al (2000) Experimental investigation of the action of pulsed electrical discharges in liquids on biological objects. IEEE Trans Plasma Sci 28:224–229. https://doi.org/10.1109/27.842908

    Article  CAS  Google Scholar 

  32. Cao Y, Qu G, Li T et al (2018) Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer. Plasma Sci Technol 20:103001. https://doi.org/10.1088/2058-6272/aacff4

    Article  CAS  Google Scholar 

  33. Dai F, Fan X, Stratton GR et al (2016) Experimental and density functional theoretical study of the effects of Fenton’s reaction on the degradation of bisphenol A in a high voltage plasma reactor. J Hazard Mater 308:419–429. https://doi.org/10.1016/j.jhazmat.2016.01.068

    Article  CAS  PubMed  Google Scholar 

  34. Walling C (1975) Fenton’s reagent revisited. Acc Chem Res 8:125–131. https://doi.org/10.1021/ar50088a003

    Article  CAS  Google Scholar 

  35. Vukusic T, Shi M, Herceg Z et al (2016) Liquid-phase electrical discharge plasmas with a silver electrode for inactivation of a pure culture of Escherichia coli in water. Innov Food Sci Emerg Technol 38:407–413. https://doi.org/10.1016/j.ifset.2016.07.007

    Article  CAS  Google Scholar 

  36. Rutberg FG, Dubina MV, Kolikov VA et al (2008) Effect of silver oxide nanoparticles on tumor growth in vivo. Dokl Biochem Biophys 421:191–193. https://doi.org/10.1134/S1607672908040078

    Article  CAS  PubMed  Google Scholar 

  37. Chen Q, Li J, Li Y (2015) A review of plasma-liquid interactions for nanomaterial synthesis. J Phys D Appl Phys 48:424005. https://doi.org/10.1088/0022-3727/48/42/424005

    Article  CAS  Google Scholar 

  38. Besser BJM, Leib KJ (2007) Toxicity of metals in water and sediment to aquatic biota. In: U.S. Department of the interior (ed) environmental effects of historical mining, Animas River Watershed, Colorado

  39. de Benetoli LOB, Cadorin BBM, da Postiglione CS et al (2011) Effect of temperature on methylene blue decolorization in aqueous medium in electrical discharge plasma reactor. J Braz Chem Soc 22:1669–1678. https://doi.org/10.1590/S0103-50532011000900008

    Article  CAS  Google Scholar 

  40. Pokryvailo A, Yankelevich Y, Wolf M et al (2004) A high-power pulsed corona source for pollution control applications. IEEE Trans Plasma Sci 32:2045–2054. https://doi.org/10.1109/TPS.2004.835952

    Article  CAS  Google Scholar 

  41. Kornev I, Preis S (2016) Aqueous benzene oxidation in low-temperature plasma of pulsed corona discharge. J Adv Oxid Technol 19:284–289. https://doi.org/10.1515/jaots-2016-0212

    Article  CAS  Google Scholar 

  42. Panorel I, Preis S, Kornev I et al (2013) Oxidation of aqueous pharmaceuticals by pulsed corona discharge. Environ Technol 34:923–930. https://doi.org/10.1080/09593330.2012.722691

    Article  CAS  PubMed  Google Scholar 

  43. Yoon S, Jeon H, Yi C et al (2018) Mutual interaction between plasma characteristics and liquid properties in AC-driven pin-to-liquid discharge. Sci Rep 8:12037. https://doi.org/10.1038/s41598-018-30540-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kolikov VA, Kurochkin VE, Panina LK et al (2007) Prolonged microbial resistance of water treated by a pulsed electrical discharge. Tech Phys 52:263–270. https://doi.org/10.1134/S1063784207020193

    Article  CAS  Google Scholar 

  45. Nemchinsky VA, Severance WS (2006) What we know and what we do not know about plasma arc cutting. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/39/22/R01

    Article  Google Scholar 

  46. Rusterholtz D (2012) Nanosecond repetitively pulsed discharges in atmospheric pressure air. École Centrale Paris

  47. Takahashi A, Hashimoto K, Kumazawa S, Nakayama T (1999) Determination of hydrogen peroxide by high-performance liquid chromatography with a cation-exchange resin gel column and electrochemical detector. Anal Sci 15:481–483. https://doi.org/10.2116/analsci.15.481

    Article  CAS  Google Scholar 

  48. Fridman A, Gutsol A, Cho YI (2007) Non-thermal atmospheric pressure plasma. Adv Heat Transf 40:1–142. https://doi.org/10.1016/S0065-2717(07)40001-6

    Article  CAS  Google Scholar 

  49. Park JY, Lee YN (1988) Solubility and decomposition kinetics of nitrous acid in aqueous solution. J Phys Chem 92:6294–6302. https://doi.org/10.1021/j100333a025

    Article  CAS  Google Scholar 

  50. Karlsson R, Tortensson L-G (1974) Controlled-potential iodometric titration of nitrite. Application to the determination of nitrite in meat products. Talanta 21:945–950

    Article  CAS  Google Scholar 

  51. Lukes P, Clupek M, Babicky V et al (2005) Generation of ozone by pulsed corona discharge over water surface in hybrid gas-liquid electrical discharge reactor. J Phys D Appl Phys 38:409–416. https://doi.org/10.1088/0022-3727/38/3/010

    Article  CAS  Google Scholar 

  52. Lieberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing. Wiley, London

    Book  Google Scholar 

  53. Massarczyk R, Chu P, Dugger C et al (2017) Paschen’s law studies in cold gases. J Instrum 12:P06019. https://doi.org/10.1088/1748-0221/12/06/P06019

    Article  Google Scholar 

  54. Lukes P, Clupek M, Babicky V (2011) Discharge filamentary patterns produced by pulsed corona discharge at the interface between a water surface and air. IEEE Trans Plasma Sci 39:2644–2645. https://doi.org/10.1109/TPS.2011.2158611

    Article  CAS  Google Scholar 

  55. Kingzett CT (1880) Report on the atmospheric oxidation of phosphorus and some reactions of ozone and hydric peroxide. J Chem Soc Trans 37:792–807. https://doi.org/10.1039/CT8803700792

    Article  CAS  Google Scholar 

  56. Lew RB (1975) Interference of nitrite in the iodometric determination of sulfite. J Am Soc Sugar Beet Technol 18:252–256

    Article  CAS  Google Scholar 

  57. Kolthoff JM (1921) Jodometrische Studien. Zeitschrift für Anal Chemie 60:338–353

    Article  Google Scholar 

  58. Porter D, Poplin MD, Holzer F et al (2009) Formation of hydrogen peroxide, hydrogen, and oxygen in gliding arc electrical discharge reactors with water spray. IEEE Trans Ind Appl 45:623–629. https://doi.org/10.1109/TIA.2009.2013560

    Article  CAS  Google Scholar 

  59. Liu ZC, Liu DX, Chen C et al (2018) Post-discharge evolution of reactive species in the water activated by a surface air plasma: a modeling study. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/aab635

    Article  Google Scholar 

  60. Laurita R, Barbieri D, Gherardi M et al (2015) Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma. Clin Plasma Med 3:53–61. https://doi.org/10.1016/j.cpme.2015.10.001

    Article  Google Scholar 

  61. Hauschild MZ, Rosenbaum RK, Olsen SI (2017) Life cycle assessment: theory and practice. Springer, Cham, Switzerland

  62. Schmidt LJ, Gaikowski MP, Gingerich WH (2006) Environmental assessment of hydrogen peroxide for aquaculture use. U.S. Geological Survey, Biological Resources Division, Wisconsin, USA

  63. Šunka P (2001) Pulse electrical discharges in water and their applications. Phys Plasmas 8:2587–2594. https://doi.org/10.1063/1.1356742

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada, the Gerald Hatch Faculty Fellowship and the McGill Engineering Doctoral Award. The authors thank Andrew Golsztajn for technical assistance and Benjamin Münch for helping to design and build the reactor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Corella Puertas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corella Puertas, E., Dzafic, A. & Coulombe, S. Investigation of the Electrode Erosion in Pin-to-Liquid Discharges and Its Influence on Reactive Oxygen and Nitrogen Species in Plasma-Activated Water. Plasma Chem Plasma Process 40, 145–167 (2020). https://doi.org/10.1007/s11090-019-10036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-10036-3

Keywords

Navigation