Skip to main content
Log in

Plasma conductivity as a probe for ambient air admixture in an atmospheric pressure plasma jet

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

By utilizing a fully floating double electrical probe system, the conductivity of a linear atmospheric pressure plasma jet, utilizing nitrogen as process gas, was measured. The floating probe makes it possible to measure currents in the nanoamp range, in an environment where capacitive coupling of the probes to the powered electrodes is on the order of several kilovolts. Using a chemical kinetic model, the production of reactive nitrogen oxide and hydrogen-containing species through admixture of ambient humid air is determined and compared to the measured gas conductivity. The chemical kinetic model predicts an enhanced diffusion coefficient for admixture of O2 and H2O from ambient air of 2.7 cm2 s−1, compared to a literature value of 0.21 cm2 s−1, which is attributed to rapid mixing between the plasma jets and the surrounding air. The dominant charge carriers contributing to the conductivity, aside from electrons, are NO+, NO2 and NO3 . Upon admixture of O2 and H2O, the dominant neutral products formed in the N2 plasma jet are O, NO and N2O, while O2(1Δg) singlet oxygen is the only dominant excited species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Merche D, Vandencasteele N, Reniers F (2012) Atmospheric plasmas for thin film deposition: a critical review. Thin Solid Films 520:4219–4236

    Article  CAS  Google Scholar 

  2. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta Part B At Spectrosc 61:2–30

    Article  Google Scholar 

  3. Laroussi M, Akan T (2007) Arc-free atmospheric pressure cold plasma jets: a review. Plasma Process Polym 4:777–788

    Article  CAS  Google Scholar 

  4. Schütze A, Jeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF (1998) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans Plasma Sci 26:1685–1694

    Article  Google Scholar 

  5. Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, van Dijk J, Zimmermann JL (2009) Plasma medicine: an introductory review. New J Phys 11:115012

    Article  Google Scholar 

  6. Laroussi M, Fridman A (2008) Plasma Medicine. Plasma Process Polym 5:501–502

    Article  CAS  Google Scholar 

  7. Tipa RS, Kroesen GMW (2011) Plasma-stimulated wound healing. IEEE Trans Plasma Sci 39:2978–2979

    Article  Google Scholar 

  8. Weltmann K-D, von Woedtke T (2017) Plasma medicine—current state of research and medical application. Plasma Phys Control Fusion 59:14031

    Article  Google Scholar 

  9. Bruggeman P, Brandenburg R (2013) Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics. J Phys D Appl Phys 46:464001

    Article  Google Scholar 

  10. Stancu GD, Janda M, Kaddouri F, Lacoste DA, Laux CO (2010) Time-resolved CRDS measurements of the N 2 (A 3 Σ u) density produced by nanosecond. J Phys Chem A 114:201–208

    Article  CAS  Google Scholar 

  11. Große-Kreul S, Hübner S, Schneider S, Ellerweg D, von Keudell A, Matejčík S, Benedikt J (2015) Mass spectrometry of atmospheric pressure plasmas. Plasma Sources Sci Technol 24:44008

    Article  Google Scholar 

  12. VITO. https://plasma.vito.be/en/equipment/plasmaline

  13. Peeters FJJ, van de Sanden MCM (2015) The influence of partial surface discharging on the electrical characterization of DBDs. Plasma Sources Sci Technol 24:15016

    Article  CAS  Google Scholar 

  14. Peeters FJJ, Yang R, van de Sanden MCM (2015) The relation between the production efficiency of nitrogen atoms and the electrical characteristics of a dielectric barrier discharge. Plasma Sources Sci Technol 24:45006

    Article  Google Scholar 

  15. Lin YE, Sheu MJ (1990) Experiments in Fluids Investigation of two plane parallel unventilated jets. Exp Fluids 10:17–22

    Article  Google Scholar 

  16. Cozens JR, Von Engel A (1965) Theory of the double probe at high gas pressure. Int J Electron 19:61–68

    Article  Google Scholar 

  17. Tichý M, Hubička Z, Šícha M, Čada M, Olejníček J, Churpita O, Jastrabík L, Virostko P, Adámek P, Kudrna P, Leshkov S, Chichina M, Kment Š (2008) Langmuir probe diagnostics of a plasma jet system. Plasma Sources Sci Technol 18:14009

    Article  Google Scholar 

  18. Wild J, Kudrna P, Tichý M, Nevrlý V, Střižík M, Bitala P, Filipi B, Zelinger Z (2012) Electron temperature measurement in a premixed flat flame using the double probe method. Contrib Plasma Phys 52:692–698

    Article  CAS  Google Scholar 

  19. Cada M, Hubicka Z, Sicha M, Churpita A, Jastrabik L, Soukup L, Tichý M (2003) Probe diagnostics of the RF barrier-torch discharge at atmospheric pressure. Surf Coat Technol 175:530–534

    Article  Google Scholar 

  20. Klagge S, Tichý M (1985) A contribution to the assessment of the influence of collisions on the measurements with Langmuir probes in the thick sheath working regime. Czechoslov J Phys 35:988–1006

    Article  Google Scholar 

  21. Osaka Y, Kobayashi N, Ohno N, Takamura S, Tanaka Y, Uesugi Y (2008) Measurement of plasma properties of the atmospheric oxy-combustion flame by using double probe method. Contrib Plasma Phys 48:485–490

    Article  CAS  Google Scholar 

  22. Kiel RE (1969) Continuum electrostatic probe theory for large sheaths on spheres and cylinders. J Appl Phys 40:3668–3673

    Article  Google Scholar 

  23. Demidov VI, Ratynskaia SV, Rypdal K (2002) Electric probes for plasmas: the link between theory and instrument. Rev Sci Instrum 73:3409

    Article  CAS  Google Scholar 

  24. Wada T, Freeman GR (1981) Temperature, density, and electric-field effects on electron mobility in nitrogen vapor. Phys Rev A 24:1066–1076

    Article  CAS  Google Scholar 

  25. Stano M, Safonov E, Kučera M, Matejčík Š (2008) Ion mobility spectrometry study of negative corona discharge in oxygen/nitrogen mixtures. Chem Listy 102:1414–1417

    Google Scholar 

  26. Young RA, Gatz CR, Sharpless RL, Ablow CM (1965) New method for measuring the rates of ionic transport and loss. I. Mobility of NO+. Phys Rev 138:A359

    Article  Google Scholar 

  27. Snuggs RM, Volz DJ, Schummers JH, Martin DW, McDaniel EW (1971) Mobilities and longitudinal diffusion coefficients of mass-identified potassium ions and positive and negative oxygen ions in oxygen. Phys Rev A 3:477–487

    Article  Google Scholar 

  28. Saporoschenko M (1965) Mobility of mass-analyzed N+, N2 +, N3 +, and N4 + ions in nitrogen gas. Phys Rev 139:A352–A356

    Article  Google Scholar 

  29. Panousis E, Merbahi N, Clément F, Yousfi M, Loiseau J-F (2009) Analysis of dielectric barrier discharges under unipolar and bipolar pulsed excitation. IEEE Trans Dielectr Electr Insul 16:734–741

    Article  Google Scholar 

  30. Stancu GD, Janda M, Kaddouri F, Lacoste DA, Laux CO (2010) Time-resolved CRDS measurements of the N 2 (A 3 Σ u) density produced by nanosecond. J Phys Chem A 114:201–208

    Article  CAS  Google Scholar 

  31. Šimek M (2003) Determination of N2(A) metastable density produced by nitrogen streamers at atmospheric pressure: 1. Design of diagnostic method. Plasma Sources Sci Technol 12:421–431

    Article  Google Scholar 

  32. Sakiyama Y, Graves DB, Chang H-W, Shimizu T, Morfill GE (2012) Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. J Phys D Appl Phys 45:425201

    Article  Google Scholar 

  33. Suresh PR, Srinivasan K, Sundararajan T, Das SK (2008) Reynolds number dependence of plane jet development in the transitional regime. Phys Fluids 20:044105

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the European Union’s FP7 NMP project ‘PlasmaNice’. The authors of this work thank R. Dams, R. Rego and E. van Hoof of the Flemish Institute for Technological Research (VITO) for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. J. Peeters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peeters, F.J.J., Rumphorst, R.F. & van de Sanden, M.C.M. Plasma conductivity as a probe for ambient air admixture in an atmospheric pressure plasma jet. Plasma Chem Plasma Process 38, 63–74 (2018). https://doi.org/10.1007/s11090-017-9865-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9865-z

Keywords

Navigation