Skip to main content
Log in

Silicon Dioxide Coating of Titanium Dioxide Nanoparticles from Dielectric Barrier Discharge in a Gaseous Mixture of Silane and Nitrogen

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The coating of titanium dioxide nanoparticles with silicon dioxide has been carried out by dielectric barrier discharge (DBD) plasma treatments to enhance the thermostability of Titania for applications at high temperature processes. During the first coating processing step, a closed film of silicon nitride was produced via plasma treatment in a gaseous mixture of silane and nitrogen, while atmospheric surface contaminations got mainly removed. In the second processing step, the DBD plasma treatment in oxygen or air was used to convert the silicon nitride mainly into silicon dioxide. Remaining carbon impurities at the interfaces between titanium dioxide and silicon nitride after the nitrogen/silane plasma treatment were subsequently removed simultaneously. Atomic force microscopy and X-ray photoelectron spectroscopy were employed to study the DBD plasma treatments of the TiO2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Qi F, Moiseev A, Deubener A, Weber AP (2011) J Nanopart Res 13:1325–1334

    Article  CAS  Google Scholar 

  2. Okada K, Yamamoto N, Kameshima Y, Yasumori A, MacKenzie KJD (2001) J Am Ceram Soc 84:1591–1596

    Article  CAS  Google Scholar 

  3. Cho JH, Lin I (1993) J Appl Phys 74:4741–4745

    Article  Google Scholar 

  4. Botha R, Haj Ibrahim B, Bulkin P, Drevillon B (2008) J Vac Sci Technol A 26:1115

    Article  CAS  Google Scholar 

  5. Charles C, Boswell RW (1997) J Appl Phys 81:43–49

    Article  CAS  Google Scholar 

  6. Coclite AM, Milella A, Palumbo F, Fracassi F, d’Agostino R (2009) Plasma Process Polym 6:512–520

    Article  CAS  Google Scholar 

  7. Navamathavan R, Jung AS, Kim CY, Choi CK, Lee HJ (2008) J Korean Phys Soc 53:1468–1474

    Article  CAS  Google Scholar 

  8. Mukhpadhyay S, Ray S (2011) Appl Surf Sci 257:9717–9723

    Article  Google Scholar 

  9. Nakamura K, Yamaguchi Y, Ykokyama K, Higashida K, Ohmi H, Kakiuchi H, Yasutake K (2011) J Nanosci Nanotechnol 11:2851–2855

    Article  CAS  Google Scholar 

  10. Dao VA, Nguyen VD, Heo J, Choi H, Kim Y, Lakshminarayan N, Yi J (2009) Vacuum 84:410–414

    Article  CAS  Google Scholar 

  11. Boogaard A, Kovalgin AY, Brunets I, Aarnink AAI, Holleman J, Wolters RAM, Schmitz J (2007) Surf Coat Technol 201:8976–8980

    Article  CAS  Google Scholar 

  12. Shi G, Xu G, Han G (2007) Mater Lett 61:463–465

    Article  CAS  Google Scholar 

  13. da Silva Zambom L, Verdonck P (2006) Thin Solid Films 515:596–598

    Article  Google Scholar 

  14. Samanta A, Das D (2009) Sol Energy Mater Sol C 93:588–596

    Article  CAS  Google Scholar 

  15. Boudreau M, Boumerzoug M, Mascher P, Jessop PE (1993) Appl Phys Lett 63:3014–3016

    Article  CAS  Google Scholar 

  16. Wrobel AM, Blaszczyk-Lezak I, Uznanski P, Glebocki B (2010) Chem Vap Depos 16:211–215

    Article  CAS  Google Scholar 

  17. Biesinger MC, Lau LWM, Gerson AR, Smart R, St C (2010) Appl Surf Sci 257:887–898

    Article  CAS  Google Scholar 

  18. Robinson KS, Sherwood PMA (1984) Surf Interface Anal 6:261–266

    Article  CAS  Google Scholar 

  19. de Siervo A, Landers R, de Castro SGC, Kleiman GG (1998) J Electron Spectr Relat Phenom 88–91:429–433

    Article  Google Scholar 

  20. Nyholm R, Martensson N, Lebugle A, Axelsson U (1981) J Phys F Metal Phys 11:1727–1733

    Article  CAS  Google Scholar 

  21. Yarzhemsky VG, Reich T, Chernysheva LV (1992) J Electron Spectr Relat Phenom 58:67–73

    Article  Google Scholar 

  22. Scofield JH (1976) J Electron Spectrosc Relat Phenom 8:129–137

    Article  CAS  Google Scholar 

  23. Dahle S, Gustus R, Viöl W, Maus-Friedrichs W (2012) Plasma Chem Plasma Process 32:1109–1125. doi:10.1007/s11090-012-9392-x

    Article  CAS  Google Scholar 

  24. Rodriguez JA, Jirsak T, Liu G, Hrbek J, Dvorak J, Maiti A (2001) J Am Chem Soc 123:9597–9605

    Article  CAS  Google Scholar 

  25. Cheung SH, Nachimuthu P, Joly AG, Engelhard MH, Bowman MK, Chambers SA (2007) Surf Sci 601:1754–1762

    Article  CAS  Google Scholar 

  26. Chen X, Lou Y, Samia ACS, Burda C, Gole JL (2005) Adv Funct Mater 15:41–49

    Article  CAS  Google Scholar 

  27. Prokes SM, Gole JL, Chen X, Burda C, Carlos WE (2005) Adv Funct Mater 15:161–167

    Article  CAS  Google Scholar 

  28. Xu J, Ao Y, Fu D, Yuan C (2008) J Cryst Growth 310:4319–4324

    Article  CAS  Google Scholar 

  29. Fàbrega C, Andreu T, Güell T, Prades JD, Estradé S, Rebled JM, Peiró F, Morante JR (2011) Nanotechnology 22:235403

    Article  Google Scholar 

  30. Campbell CT (1997) Surf Sci Rep 27:1–111

    Article  CAS  Google Scholar 

  31. McCafferty E, Wightman JP (1999) Appl Surf Sci 143:92–100

    Article  CAS  Google Scholar 

  32. Massaro C, Rotolo P, De Riccardis F, Milella E, Napoli A, Wieland M, Textor M, Spencor ND, Brunette DM (2002) J Mater Sci Mater Med 13:535–548

    Article  CAS  Google Scholar 

  33. Hashimoto S, Tanaka A, Murata A, Sukarada T (2004) Surf Sci 556:22–32

    Article  CAS  Google Scholar 

  34. Cova P, Poulin S, Grenier O, Masut RA (2005) J Appl Phys 97:073518

    Article  Google Scholar 

  35. Himpsel FJ, McFeely FR, Taleb-Ibrahimi A, Yarmoff JA (1988) Phys Rev B 38:6084–6096

    Article  CAS  Google Scholar 

  36. Sutherland DGJ, Akatsu H, Copel M, Himpsel FJ, Callcott TA, Carlisle JA, Ederer DL, Jia JJ, Jimenez I, Perera R, Shuh DK, Terminello LJ, Tong WM (1995) J Appl Phys 78:6761–6769

    Article  CAS  Google Scholar 

  37. Choo C-K, Sakamoto T, Tanaka K, Nakata R (1999) Appl Surf Sci 148:116–125

    Article  CAS  Google Scholar 

  38. Rignanese G-M, Pasquarello A, Charlier J-C, Gonze X, Car R (1997) Phys Rev Lett 79:5174–5177

    Article  CAS  Google Scholar 

  39. Jolly WL, Bomben KD, Eyermann CJ (1984) Atom Data Nucl Data 31:433–493

    Article  CAS  Google Scholar 

  40. Gritsenko VA, Kwok RWM, Wong H, Xu JB (2002) J Non-Cryst Solids 297:96–101

    Article  CAS  Google Scholar 

  41. Sassella A (1993) Phys Rev B 48:14208–14215

    Article  CAS  Google Scholar 

  42. Hasegawa S, He L, Inokuma T, Kurata Y (1992) Phys Rev B 46:12478–12484

    Article  CAS  Google Scholar 

  43. Yin Z, Smith FW (1990) Phys Rev B 42:3658–3665

    Article  CAS  Google Scholar 

  44. Frerichs M, Voigts F, Maus-Friedrichs W (2006) Appl Surf Sci 253:950–958

    Article  CAS  Google Scholar 

  45. Powell C, Jablonski A (2010) J Electron Spectrosc Relat Phenom 178:331–346

    Article  Google Scholar 

  46. Reilman RF, Msezane A, Manson ST (1976) J Electron Spectrosc Relat Phenom 8:389–394

    Article  CAS  Google Scholar 

  47. Jablonski A (1995) Surf Interface Anal 23:29–37

    Article  CAS  Google Scholar 

  48. National Institute of Standards and Technology Electron Inelastic-Mean-Free-Path Database 1.2, http://www.nist.gov/srd/nist71.cfm. Accessed 29 Feb 2012

  49. Ertl G, Küppers J (1985) Low energy electrons and surface chemistry. VCH Verlag, Weinheim

    Google Scholar 

  50. Wegewitz L, Dahle S, Höfft O, Voigts F, Viöl W, Endres F, Maus-Friedrichs W (2011) J Appl Phys 110:033302

    Article  Google Scholar 

  51. Kogelschatz U (2003) Plasma Chem Plasma Phys 23:1–46

    Article  CAS  Google Scholar 

  52. Chen L, Chen F, Shi Y, Zhang J (2012) J Phys Chem C 116:8579–8586

    Article  CAS  Google Scholar 

  53. Trompeter FJ (2001) PHD thesis at the RWTH Aachen

  54. Penetrante BM, Hsiao MC, Bardsley JN, Merritt BT, Vogtlin GE, Kuthi A, Burkhart CP, Bayless JR (1997) Plasma Sources Sci Technol 6:251–259

    Article  CAS  Google Scholar 

  55. Müllerova J, Sutta P, van Elzakker G, Zeman M, Mikula M (2008) Appl Surf Sci 254:3690–3695

    Article  Google Scholar 

  56. Nunomura S, Kondo M (2009) J Phys D Appl Phys 42:185210

    Article  Google Scholar 

  57. Raha D, Das D (2008) J Phys D Appl Phys 41:085303

    Article  Google Scholar 

  58. Kovalgin AY, Isai G, Holleman J, Schmitz J (2008) J Electrochem Soc 155:G21–G28

    Article  CAS  Google Scholar 

  59. Wang D, Liu Q, Li F, Qin Y, Liu D, Tang Z, Peng S, He D (2010) Appl Surf Sci 257:1342–1346

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) under project numbers MA 1893/18-1, VI 359/9-1 and WE 2331/10-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Maus-Friedrichs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahle, S., Wegewitz, L., Qi, F. et al. Silicon Dioxide Coating of Titanium Dioxide Nanoparticles from Dielectric Barrier Discharge in a Gaseous Mixture of Silane and Nitrogen. Plasma Chem Plasma Process 33, 839–853 (2013). https://doi.org/10.1007/s11090-013-9472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9472-6

Keywords

Navigation