Skip to main content
Log in

Plasmas in Saline Solution Sustained Using Bipolar Pulsed Power Source: Tailoring the Discharge Behavior Using the Negative Pulses

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Plasmas in saline solution driven by a repetitive bipolar pulsed power source are studied. We use a negative pulse to generate electrolytic gas with a controllable amount, followed by a positive pulse to ignite the plasma. With an increase in the negative voltage pulse amplitude from 0 to −80 V, we observed an increase in the amount of electrolytic gas (hydrogen) formation, resulting in a reduced time delay, from 65 to 6 μs, required to ignite the plasma upon the onset of the positive pulse. A decrease, from 1.75 to 1.0 A, in the peak currents within the positive voltage pulse is also observed. Optical emission spectroscopy shows that the intensity ratio of the Hα (656 nm) to Na (588 nm) emission lines increases from zero to 0.0035. These observations can be well explained by the increase in the gas coverage on the electrode surface and the change in the gas composition within which the plasma is ignited with the application of the negative pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kanazawa S, Kawano H, Watanabe S, Furuki T, Akamine S, Ichiki R, Ohkubo T, Kocik M, Mizeraczyk J (2011) Plasma Sources Sci Technol 20:034010

    Article  Google Scholar 

  2. Locke BR, Sato M, Sunka P, Hoffmann MR, Chang JS (2006) Ind Eng Chem Res 45:882–905

    Article  CAS  Google Scholar 

  3. Foster JE, Weatherford B, Gillman E, Yee B (2010) Plasma Sources Sci Technol 19:025001

    Article  Google Scholar 

  4. Locke BR, Shih KY (2011) Plasma Sources Sci Technol 20:034006

    Article  Google Scholar 

  5. Chen Q, Kaneko T, Hatakeyama R (2012) Appl Phys Express 5:086201

    Article  Google Scholar 

  6. Hagino T, Kondo H, Ishikawa K, Kano H, Sekine M, Hori M (2012) Appl Phys Express 5:035101

    Article  Google Scholar 

  7. Stalder KR, Woloszko J (2007) Contrib Plasma Phys 47:64–71

    Article  CAS  Google Scholar 

  8. Vankov A, Palanker D (2007) J Appl Phys 101:124701

    Article  Google Scholar 

  9. Sakiyama Y, Tomai T, Miyano M, Graves DB (2009) Appl Phys Lett 94:161501

    Article  Google Scholar 

  10. Stalder KR, McMillen DF, Woloszko J (2005) J Phys D Appl Phys 38:1728–1738

    Article  CAS  Google Scholar 

  11. Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ (1999) Surf Coat Technol 122:73–93

    Article  CAS  Google Scholar 

  12. Bruggeman P, Leys C (2009) J Phys D Appl Phys 42:053001

    Article  Google Scholar 

  13. Yan ZC, Chen L, Wang HL (2008) J Phys D Appl Phys 41:155205

    Article  Google Scholar 

  14. Bruggeman P, Verreycken T, Gonzalez MA, Walsh JL, Kong MG, Leys C, Schram DC (2010) J Phys D Appl Phys 43:124005

    Article  Google Scholar 

  15. Nikiforov AY, Leys C, Li L, Nemcova L, Krcma F (2011) Plasma Sources Sci Technol 20:034008

    Article  Google Scholar 

  16. Takeuchi N, Ishii Y, Yasuoka K (2012) Plasma Sources Sci Technol 21:015006

    Article  Google Scholar 

  17. Sahni M, Locke BR (2006) Ind Eng Chem Res 45:5819–5825

    Article  CAS  Google Scholar 

  18. Bruggeman P, Schram D, Gonzalez MA, Rego R, Kong MG, Leys C (2009) Plasma Sources Sci Technol 18:025017

    Article  Google Scholar 

  19. Hickling A, Ingram MD (1964) Trans Faraday Soc 60:783–793

    Article  CAS  Google Scholar 

  20. Schaper L, Stalder KR, Graham WG (2011) Plasma Sources Sci Technol 20:034004

    Article  Google Scholar 

  21. Schaper L, Graham WG, Stalder KR (2011) Plasma Sources Sci Technol 20:034003

    Article  Google Scholar 

  22. Hsieh AH, Chang HW, Hsu CC (2012) J Phys D Appl Phys 45:415202

    Article  Google Scholar 

  23. Chang HW, Hsu CC (2011) Plasma Sources Sci Technol 20:045001

    Article  Google Scholar 

  24. Chang HW, Hsu CC (2012) J Phys D Appl Phys 45:255203

    Article  Google Scholar 

  25. Shirai N, Ichinose K, Uchida S, Tochikubo F (2011) Plasma Sources Sci Technol 20:034013

    Article  Google Scholar 

  26. Bruggeman P, Degroote J, Vierendeels J, Leys C (2008) Plasma Sources Sci Technol 17:025008

    Article  Google Scholar 

  27. Bruggeman P, Degroote J, Leys C, Vierendeels J (2008) J Phys D Appl Phys 41:194007

    Article  Google Scholar 

  28. Sie CY, Chang HW, Hsu CC (2011) J Electrochem Soc 158:E37–E40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Science Council, Taiwan (100-2628-E-002-012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-che Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Hw., Hsu, Cc. Plasmas in Saline Solution Sustained Using Bipolar Pulsed Power Source: Tailoring the Discharge Behavior Using the Negative Pulses. Plasma Chem Plasma Process 33, 581–591 (2013). https://doi.org/10.1007/s11090-013-9447-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9447-7

Keywords

Navigation