Skip to main content
Log in

Nickel Nanoparticles Formation from Solution Plasma Using Edge-Shielded Electrode

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Because of the easy massproduction, synthesis of metallic nanoparticles from a solution plasma is an attractive method. However, a solution plasma produces a highly inhomogeneous electric field via transition to full-plasma, and the products are partially oxidized and agglomerated, with a wide size-distribution. Here, we show a simple method of suppressing oxidation of products. An electrode tip was shield by a glass tube and a voltage of up to 180 V was applied with the electrolyte of 0.1 M NaOH solution. Significantly, the edge-shield was quite effective for maintaining partially glow discharge. The results were (1) surface temperature of the electrode less than 100°C, (2) main phase of metallic nickel evaluated by XRD, and (3) nanoparticles of an average size of 220 nm. These results showed the potential for an application to the production of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zheng X, Kubozono H, Yamada H, Kato K, Ishiwata Y, Xu C (2008) Giant negative thermal expansion in magnetic nanocrystals. Nat Nanotechnol 3:724–726

    Article  ADS  Google Scholar 

  2. Satoh N, Nakashima T, Kamikura K, Yamamoto K (2008) Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nat Nanotechnol 3:106–111

    Article  ADS  Google Scholar 

  3. Kubo R (1962) Electronic properties of metallic fine particles. I. J Phys Soc Jpn 17:975

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Kawabata A, Kubo R (1966) Electronic properties of fine metallic particles. II. Plasma resonance absorption. J Phys Soc Jpn 21:1765

    Article  ADS  Google Scholar 

  5. Chen W, Li L, Qi J, Wang Y, Gui Z (1998) Influence of electroless nickel plating on multilayer ceramic capacitors and the implications for reliability in multilayer ceramic capacitors. J Am Ceram Soc 81:2751–2752

    Article  Google Scholar 

  6. Gong J, Wang LL, Liu Y, Yang JH, Zong ZG (2008) Structural and magnetic properties of hcp and fcc Ni nanoparticles. J Alloys Compd 457:6–9

    Article  Google Scholar 

  7. Mourdikoudis S, Simeonidis K, Vilalta-Clemente A, Tuna F, Tsiaoussis I, Angelakeris M, Dendrinou-Samara C, Kalogirou O (2009) Controlling the crystal structure of Ni nanoparticles by the use of alkylamines. J Magn Magn Mater 321:2723–2728

    Article  ADS  Google Scholar 

  8. Jeng Y-R, Wen H-C, Tsai P-C (2009) The effect of Ni catalytic nanoparticle on the growth of carbon nanotubes: a perspective from nanotribological characterization. Diamond Relat Mater 18:528–532

    Google Scholar 

  9. Chen C-Y, Lin K-Y, Tsai W-T, Chang J-K, Tseng C-M (2010) Electroless deposition of Ni nanoparticles on carbon nanotubes with the aid of supercritical CO2 fluid and a synergistic hydrogen storage property of the composite. Int J Hydrogen Energy 35:5490–5497

    Article  Google Scholar 

  10. Kim S-G, Terashi Y, Purwanto A, Okuyama K (2009) Synthesis and film deposition of Ni nanoparticles for base metal electrode applications. Colloids Surf A 337:96–101

    Article  Google Scholar 

  11. Furusho H, Kitano K, Hamaguchi S, Nagasaki Y (2009) Preparation of stable water-dispersible PEGylated gold nanoparticles assisted by nonequilibrium atmospheric-pressure plasma jets. Chem Mater 21:3526–3535

    Article  Google Scholar 

  12. Koo IG, Lee MS, Shim JH, Ahn JH, Lee WM (2005) Platinum nanoparticles prepared by a plasma-chemical reduction method. J Mater Chem 15:4125–4128

    Article  Google Scholar 

  13. Richmonds C, Sankaran RM (2008) Plasma-liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Appl Phys Lett 93:131501

    Article  ADS  Google Scholar 

  14. Liang X, Wang Z-J, Liu C-J (2010) Size-controlled synthesis of colloidal gold nanoparticles at room temperature under the influence of glow discharge. Nanoscale Res Lett 5:124–129

    Article  ADS  Google Scholar 

  15. Sano N, Charinpanitkul T, Kanki T, Tanthapanichakoon W (2004) Controlled synthesis of carbon nanoparticles by arc in water method with forced convective jet. J Appl Phys 96:645–649

    Article  ADS  Google Scholar 

  16. Muthakarn P, Sano N, Charinpanitkul T, Tanthapanichakoon W, Kanki T (2006) Characteristics of carbon nanoparticles synthesized by a submerged arc in alcohols, alkanes, and aromatics. J Phys Chem B 110:18299–18306

    Article  Google Scholar 

  17. Kawanami O, Sano N (2009) Gravitational effects on carbon nano-materials synthesized by arc in water. Ann NY Acad Sci 1161:494–499

    Article  ADS  Google Scholar 

  18. Li H, Guan L, Shi Z, Gu Z (2004) Direct synthesis of high purity single-walled carbon nanotube fibers by arc discharge. J Phys Chem B 108:4573–4575

    Article  Google Scholar 

  19. Yao W-T, Yu S-H, Zhou Y, Jiang J, Wu Q-S, Zhang L, Jiang J (2005) Formation of uniform CuO nanorods by spontaneous aggregation: Selective synthesis of CuO, Cu2O, and Cu nanoparticles by a Solid–Liquid phase arc discharge process. J Phys Chem B 109:14011–14016

    Article  Google Scholar 

  20. Takai O (2008) Solution plasma processing (SPP). Pure Appl Chem 80:2003–2011

    Article  Google Scholar 

  21. Ichin Y, Mitamura K, Saito N, Takai O (2009) Characterization of platinum catalyst supported on carbon nanoballs prepared by solution plasma processing. J Vac Sci Technol A 27:826

    Article  Google Scholar 

  22. Saito N, Hieda J, Takai O (2009) Synthesis process of gold nanoparticles in solution plasma. Thin Solid Films 518:912–917

    Article  ADS  Google Scholar 

  23. Kim SM, Kim GS, Lee SY (2008) Effects of PVP and KCl concentrations on the synthesis of gold nanoparticles using a solution plasma processing. Mater Lett 62:4354–4356

    Article  Google Scholar 

  24. Tokushige M, Nishikiori T, Ito Y (2010) Formation of fine Ni nanoparticle by plasma-induced cathodic discharge electrolysis using rotating disk anode. J Electrochem Soc 157:E162–E166

    Article  Google Scholar 

  25. Tokushige M, Nishikiori T, Ito Y (2010) Plasma-induced cathodic discharge electrolysis to form various metal/alloy nanoparticles. Russ J Electrochem 46:619–626

    Article  Google Scholar 

  26. Yonezawa T, Hyono A, Sato S, Ariyada O (2010) Preparation of zinc oxide nanoparticles by using microwave-induced plasma in liquid. Chem Lett 39:783–785

    Article  Google Scholar 

  27. Toriyabe Y, Watanabe S, Yatsu S, Shibayama T, Mizuno T (2007) Controlled formation of metallic nanoballs during plasma electrolysis. Appl Phys Lett 91:041501–041503

    Article  ADS  Google Scholar 

  28. Saito G, Hosokai S, Akiyama T, Yoshida S, Yatsu S, Watanabe S (2010) Size-controlled Ni nanoparticles formation by solution glow discharge. J Phys Soc Jpn 79:083501

    Article  ADS  Google Scholar 

  29. Saito G, Hosokai S, Tsubota M, Akiyama T (2011) Synthesis of copper/copper oxide nanoparticles by solution plasma. J Appl Phys 110:023302

    Article  ADS  Google Scholar 

  30. Chang JS, Lawless PA, Yamamoto T (1991) Corona discharge processes. IEEE Trans Plasma Sci 19:1152–1166

    Article  ADS  Google Scholar 

  31. Cho C, Choi Y, Kang C, Lee G (2007) Effects of the medium on synthesis of nanopowders by wire explosion process. Appl Phys Lett 91:141501

    Article  ADS  Google Scholar 

  32. Roth J, Rahel J, Dai X, Sherman D (2005) The physics and phenomenology of one atmosphere uniform glow discharge plasma (OAUGDP(tm)) reactors for surface treatment applications. J Phys D Appl Phys 38:555

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Akiyama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (M1V 3093 kb)

Supplementary material 2 (M1V 3417 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, G., Hosokai, S., Tsubota, M. et al. Nickel Nanoparticles Formation from Solution Plasma Using Edge-Shielded Electrode. Plasma Chem Plasma Process 31, 719–728 (2011). https://doi.org/10.1007/s11090-011-9313-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-011-9313-4

Keywords

Navigation