Skip to main content
Log in

Transport Coefficients of Ag–SiO2 Plasmas

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Calculated values of viscosity, thermal and electrical conductivities of plasma formed in mixtures of silver (Ag) and silica (SiO2) are presented. The calculations, which assume local thermodynamic equilibrium, are performed for three pressures (1, 10 and 30 atm) in the temperature range from 4,000 to 30,000 K. All the data for the potential interactions and the necessary formulations to obtain values of transport coefficients are given in details. For atmospheric pressure, five mixtures (100% Ag, 75% Ag and 25% SiO2, 50% Ag and 50% SiO2, 25% Ag and 75% SiO2, 100% SiO2) in weight percentage are studied. In order to analyse the pressure influence on the transport coefficients, three samples of Ag–SiO2 mixtures (100% Ag, 50% Ag and 50% SiO2, 100% SiO2) in weight percentage are discussed for pressures of 1, 10 and 30 atm. In addition for the test case of oxygen plasma, we compare the computation code results with values obtained by other authors: discrepancies are found and explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. http://www.profuseinternational.com/sciencetech/index.html

  2. Rochette D, Bussière W (2004) Plasma Sources Sci Technol 13:293

    Article  ADS  Google Scholar 

  3. Rochette D, Clain S (2005) Int J Heat Fluid Flow 26(2):322

    Article  Google Scholar 

  4. Coufal O (1998) J Phys D Appl Phys 31:2025

    Article  ADS  Google Scholar 

  5. Bussière W, André P (2001) J Phys D Appl Phys 34:1657

    Article  ADS  Google Scholar 

  6. Rochette D, Bussière W, André P (2004) Plasma Chem Plasma Process 24(3):475

    Article  Google Scholar 

  7. Murphy AB (1995) Plasma Chem Plasma Process 15(2):279

    Article  Google Scholar 

  8. Murphy AB, Arundell CJ (1994) Plasma Chem Plasma Process 14(4):451

    Article  Google Scholar 

  9. Aubreton J, Fauchais P (1983) Revue Phys Appl 18:51

    Google Scholar 

  10. Hirschfelder JO, Curtiss CF, Byron Bird R (1964) Molecular theory of gases and liquids. Wiley, New york

    Google Scholar 

  11. Chapmann S, Cowling TG (1939) The mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge

    Google Scholar 

  12. Hulburt HM, Hirschfelder JO (1941) J Chem Phys 9:61

    Article  ADS  Google Scholar 

  13. Hulburt HM, Hirschfelder JO (1961) J Chem Phys 35:1901

    Article  ADS  Google Scholar 

  14. Rainwater JC, Biolsi L, Biolsi KJ, Holland PM (1983) J Chem Phys 79(3):1462

    Article  ADS  Google Scholar 

  15. Zhang H-X, Balasubramanian K (1993) J Chem Phys 98(9):7092

    Article  ADS  Google Scholar 

  16. Lide DR (eds) (2001) CRC handbook of chemistry and physics, 82nd edn. CRC Press, New York

    Google Scholar 

  17. Gurvich LV, Veyts IV, Alcock CB (1991) Thermodynamic properties of individual substances, 4th edn, vol 2, part 1. edited by Hemisphere Publishing Corporation

  18. Peyerimhoff SD, Buenker RJ (1982) Chem Phys 72:111

    Article  Google Scholar 

  19. Capitelli M, Ficocelli E (1972) J Phys B Atom Mol Phys 5:2066

    Article  ADS  Google Scholar 

  20. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV. Constants of diatomic molecules. Van Nostrand Reinhold Co.

  21. Monchick L (1959) Phys Fluids 2(6):695

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Sourd B, Aubreton J, Elchinger M-F, Labrot M, Michon U (2006) J Phys D Appl Phys 39:1105

    Article  ADS  Google Scholar 

  23. Levin E, Partridge H, Stallcop JR (1989) Collision integrals and high temperature transport properties for N–N, O–O and N–O. Research Institute for Advanced Computer Science NASA Ames Research Center Technical Report 89.43

  24. Sourd B, André P, Aubreton J, Elchinger M-F (2007) Plasma Chem Plasma Process 27:35

    Article  Google Scholar 

  25. O’Hara H, Smith FJ (1971) Comput Phys Commun 2:47

    Article  ADS  Google Scholar 

  26. Rainwater JC, Holland PM, Biolsi L (1982) J Chem Phys 77(1): 434

    Article  ADS  Google Scholar 

  27. Mexmain JM (1983) Coefficients de transport dans un plasma à deux temperatures-Application au mélange Argon Oxygène. PhD, Limoges University

  28. Aubreton J (1985) Etude des propriétés thermodynamiques et de transport dans des plasmas thermiques à l’équilibre et hors d’équilibre thermodynamiques: applications aux plasmas de mélange Ar-H2 et Ar-O2 (in French). Thèse d’état, Université de Limoges, France

  29. Klein M, Smith F (1968) J Res Nat Bureau Stand-A Phys Chem 72 A(4):359

    Google Scholar 

  30. Kappen K (1994) Berechnung der Materialfunktionen von Hochdruckplasmen am Beispiel von Methanol. Lehrstuhl, Technische Universität München

  31. Kee RJ, Lewis GD, Warnatz J, Coltrin ME, Miller JA, Moffat HK (1998) A Fortran computer code package for the evaluation of gas-phase, multicomponent tranport properties. Supercedes SAND86–8246B, http://www.osc.edu/PET/CCM/skeleton/software/chemkin/transport.pdf

  32. Capitelli M, Gorse C, Longo S, Giordano D (1998) Transport properties of high temperature air species. AIAA 1–13

  33. Timpel D, Scheerschmidt K, Garofolini SH (1997) J Non-Cryst Solids 221:187

    Article  ADS  Google Scholar 

  34. http://xplor.csb.yale.edu/xplor/xploron-web/toppar/parameter.elements

  35. Koalaga Z (1991) Contribution à l’étude expérimentale et théorique des plasmas d’arcs électriques laminés (in French). Thèse d’Université, No343, Université Blaise Pascal, France

  36. Andre P, Brunet L, Bussière W, Caillard J, Lombard J, Picard J (2004) Eur Phys J Appl Phys 25:169

    Article  ADS  Google Scholar 

  37. Diaz Penã M, Pando C, Renuncio JAR (1982) J Chem Phys 76(1):325

    Article  ADS  Google Scholar 

  38. Diaz Penã M, Pando C, Renuncio JAR (1982) J Chem Phys 76(1):333

    Article  ADS  Google Scholar 

  39. Ronchi C, Losilevski IL, Yakub E (2004) Equation of state of uranium dioxide. Data Collection. Springer-Verlag, Berlin

    Google Scholar 

  40. Dalgarno A (1958) Phil Trans Roy Soc Lond 250 A:426

    Article  ADS  Google Scholar 

  41. Devoto RS (1967) Phys Fluids 10(2):354

    Article  ADS  Google Scholar 

  42. Rapp D, Francis WE (1962) J Chem Phys 37(11):2631

    Article  ADS  Google Scholar 

  43. Kihara T, Taylor MH, Hirschfelder JO (1960) Phys Fluids 3(5):715

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. Murphy AB (2000) Transport coefficients of hydrogen and argon-hydrogen plasmas 20(3):279

  45. Devoto RS (1973) Phys Fluids 16(5):616

    Article  ADS  Google Scholar 

  46. Mason EA, Munn RJ, Smith FJ (1967) Phys Fluids 10(8):1827

    Article  ADS  Google Scholar 

  47. Itikawa Y (1974) Atomic Data Nuclear Data Tables 14(1):1

    Article  ADS  Google Scholar 

  48. Spencer FE, Phelps AV (1976) Momentum transfer cross-sections and conductivity integrals for gases of MHD interest. In: Proc XVth Symp Eng Asp of MDH, Philadelphia PA, IX.9.1-IX.9.12

  49. Robinson EJ, Geltmann (1967) Single- and double-quantum photodetachment of negative ions. Phys Rev 153(1):153_4

  50. Fricke B (1986) J Chem Phys 84(2):862

    Article  ADS  Google Scholar 

  51. Mayol R, Salvat F (1997) Atomic Data Nuclear Data Tables 65(1):55

    Article  ADS  Google Scholar 

  52. André P (2005) Propriétés de transport pour l’étude de l’arc électrique. Exemple le cuivre. Colloque sur les arcs électriques (in French), 37–42, http://hal.ccsd.cnrs.fr

  53. Aubreton A, Elchinger MF (2003) J Phys D Appl Phys 36(15):1798

    Article  ADS  Google Scholar 

  54. Trajmar S, Williams W, Srivastava SK (1977) J Phys B Molec Phys 10(16):3323

    Article  ADS  Google Scholar 

  55. Msezane AZ, Henry RJW (1986) Phys Rev A 33(3):1631

    Article  ADS  Google Scholar 

  56. Scheibner KF, Hazi AU (1987) Phys Rev A 35(11):4869

    Article  ADS  Google Scholar 

  57. Chervy B, Gleizes A (1998) Electrical conductivity in SF6 thermal plasma at low temperature (1000–5000 K). J Phys D Appl Phys 2557

  58. Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas. Plenum Press, New York

    Google Scholar 

  59. Aubreton J, Bonnefoi C, Mexmain JM (1986) Revue Phys Appl 21:365

    Google Scholar 

  60. Devoto RS (1967) Phys Fluids 10(10):2105

    Article  ADS  Google Scholar 

  61. Bonnefoi C (1975) Contribution au calcul théorique des coefficients de transport d’un plasma d’azote par la méthode de Chapman–Enskog à la 4ème approximation (in French). Thèse de 3ème, Université de Limoges, France, No. 75.9

  62. Chervy B, Gleizes A, Razafinimanana M (1994) J Phys D Appl Phys 27:1193

    Article  ADS  Google Scholar 

  63. Vanderslice JT, Weismann Stanley, Mason EA, Fallon RJ (1962) The Physics of Fluids 5(2):155

    Article  ADS  Google Scholar 

  64. Muckenfuss C, Curtiss CF (1958) J Chem Phys 29(6):1273

    Article  ADS  MathSciNet  Google Scholar 

  65. Butler JN, Brokaw RS (1957) J Chem Phys 26(6):1636

    Article  ADS  Google Scholar 

  66. Capitelli M, Gorse C, Longo S, Giordano D (2000) J Thermophys Heat Trans 14(2):259

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge many interesting and friendly discussions with Mr. Aubreton and Mrs. Elchinger from SPCTS at Limoges University. The authors also acknowledge, both for their financial support and their interest through many discussions, Mr. T. Rambaud and Mr. J.L. Gelet from Ferraz Shawmut, Mr. J.C. Perez Quesada from Mesa, Mr. F. Gentils from Schneider Electric.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal André.

Appendices

Appendix A. Collision Integrals

The reduced collision integral is given by:

$$ \Omega ^{\ast(l,s)}\left({T^{\ast}} \right)=\frac{1}{(s+1)!}\frac{1}{\left({T^{\ast}} \right)^{s+2}}\int_0^\infty {e^{-E/T^{\ast}}E^{s+1}Q^{l}\left(E \right)}\,{\rm d}E $$

with

$$ Q^{l}(E)=\frac{2}{\left[ {1-\frac{1}{2}\frac{1+\left({-1} \right)^{l}}{1+l}} \right]}\int_0^\infty {\left\{ {1-\cos ^{l}\left({\chi \left({E,b} \right)} \right)} \right\}b\,{\rm d}b} $$

and χ (E, b) the scattering angle:

$$ \chi \left({E, b} \right)=\pi -2b\int_{r_{\rm m}}^\infty {\frac{{\rm d}r}{r^{2}\left[ {1-\frac{b^{2}}{r^{2}}-\frac{V(r)}{E}} \right]^{1/2}}} $$

where r m is the minimum relative distance between the two atoms following the chosen potential V(r). b is the impact parameter. E is the relative total energy.

The reduced temperature T * is given by : T * = kT/ɛ where T is the temperature, k is Boltzmann constant and ɛ is the depth potential (Table 1).

Then the integral collision can be calculated from the reduced integral collision Ω *(l,s) ij (T * ) versus the reduced temperature: \(\overline{\Omega}_{_{ij} }^{(l,s)} \left(T \right)=\sigma ^{2}\overline{{\Omega }}_{ij}^{\ast(l,s)} \left({kT/\varepsilon } \right)\).

With σ the value of r for which V(r) = 0.

Appendix B. Formulation of Transport Coefficient

Electrical Conductivity

To calculate the electrical conductivity σ we used the third-order approximation of the Chapman–Enskog method [60, 61]:

$$ \sigma _{\rm elec} =\frac{3 e^{2}}{2}n_1^2 \sqrt{\frac{2\pi }{m_1 k T}}\frac{\left| {{\begin{array}{ll} {q^{11}}& {q^{12}} \\ {q^{12}}& {q^{22}} \\ \end{array} }} \right|}{\left| {{\begin{array}{lll} {q^{00}}& {q^{01}}& {q^{02}} \\ {q^{01}}& {q^{11}}& {q^{12}} \\ {q^{02}}& {q^{12}}& {q^{22}} \\ \end{array} }} \right|} $$
(1)

where e is the electronic charge, n 1 the electron number density, k the Boltzmann constant, m 1 mass of an electron and T is the temperature. The parameters q ij are given in [60, 61].

Coefficient of Viscosity

To calculate the viscosity assuming that it is due to the heavy chemical species, we used the formulation given in [10, 62]:

$$ \eta =\frac{\left| {\begin{array}{llll} {H_{11} }& {\cdots}& {H_{1\upsilon}}& {x_1} \\ {\cdots}& & & \\ {H_{\upsilon1}}& {\cdots}& {H_{\upsilon\upsilon} }& {x_\upsilon } \\ {x_1 }& {\cdots}& {x_\upsilon }& 0 \\ \end{array} } \right|}{\left| {\begin{array}{lll} {H_{11} }& {\cdots}& {H_{1\upsilon} } \\ {\cdots}& & \\ {H_{\upsilon1} }& {\cdots}& {H_{\upsilon\upsilon} } \\ \end{array} } \right|} $$
(2)

where

$$ \begin{aligned} H_{ii} &=\frac{x_i^2 }{\eta _i }+\sum_{\begin{array}{l} k=1 \\ k\neq i \\ \end{array}}^\upsilon {\frac{2 x_i x_k }{\eta _{ik} }\frac{M_i M_k }{(M_i +M_k)^{2}}} \left({\frac{5}{3A_{ik}^\ast }+\frac{M_k }{M_i }} \right)\\ H_{ij} &=-\frac{2x_i x_j }{\eta _{ij} }\frac{M_i M_j }{\left({M_i +M_j } \right)^{2}}\left(\frac{5}{3A_{ij^\ast }-1} \right)\quad (i\neq j) \end{aligned} $$

with \(A_{ij}^\ast =\frac{\overline{\Omega}_{i j}^{(2,2)}}{\overline{\Omega}_{i j}^{(1,1)} }\), \(\eta _i =\frac{5}{16}\frac{1}{\overline{\Omega}_{i,i}^{(2,2)} }\sqrt\frac{k T}{N_a \pi }\sqrt{M_i }\), \(\eta _{ij} =\frac{5}{16}\frac{1}{\overline{\Omega}_{i,j}^{(2,2)} }\sqrt{\frac{k T}{N_a \pi }}\sqrt{\frac{2 M_i M_j }{M_i +M_j }}\)

x i and M i are the molar fraction and molar mass of i chemical species, N a is the Avogadro number, \(\overline{\Omega}_{i j}^{(l,m)} \) are collision integrals given in Appendix A and υ is the number of heavy chemical species.

Total Thermal Conductivity

The total thermal conductivity λ tot can be separated into four terms with a good accuracy [60, 63]:

$$ \lambda _{\rm tot} =\lambda_{\rm tr}^e +\lambda _{\rm tr}^{\rm h} +\lambda _{\rm int} +\lambda _{\rm react} $$
(3)

where λ etr is the translational thermal conductivity of electrons, λ htr the translational thermal conductivity of heavy species particles, λint the internal thermal conductivity and λreact the chemical reaction thermal conductivity.

Thermal conductivity of electrons at the third approximation order is given by [60, 61]:

$$ \lambda _{\rm tr}^e =\frac{75}{8}k n_1^2 \sqrt{\frac{2\pi RT}{M_1 }}\frac{q^{22}}{q^{11}q^{22}-\left({q^{12}} \right)^{2}} $$
(4)

The translational thermal conductivity due to the heavy species in the second-order approximation can be written as [62, 64]:

$$ \lambda _{\rm tr}^{\rm h} =4\frac{\left| {{\begin{array}{llll} {L_{11} }& {\cdots}& {L_{1\upsilon} }& {x_1 } \\ {\cdots}& & & \\ {L_{\upsilon1}}& {\cdots}& {L_{\upsilon\upsilon} }& {x_\upsilon } \\ {x_1 }& {\cdots}& {x_\upsilon }& 0 \\ \end{array} }} \right|}{\left| {{\begin{array}{lll} {L_{11} }& {\cdots}& {L_{1\upsilon} } \\ {\cdots}& & \\ {L_{\upsilon1} }& {\cdots}& {L_{\upsilon\upsilon} } \\ \end{array} }} \right|} $$
(5)

where

$$ \begin{aligned} L_{ij} &=\frac{2 x_i \;x_j M_i M_j }{\left({M_i +M_j } \right)^{2}A_{ij}^\ast k_{ij} }\left({\frac{55}{4}-3B_{ij}^\ast -4A_{ij}^\ast } \right)\quad \hbox{for}\,i\neq j\\ L_{ii} &=-4\frac{\left({x_i } \right)^{2}}{k_{ii} }-\sum_{\begin{array}{l} k=1 \\ k\neq i \\ \end{array}}^\upsilon{\frac{2 x_i x_k \left({\frac{15}{2}M_i^2 +\frac{25}{4}M_k^2 -3B_{ik}^\ast M_k^2 +4A_{ik}^\ast M_i M_k } \right) } {\left({M_i +M_j } \right)^{2}A_{ik}^\ast k_{ik} }} \end{aligned} $$

with \(k_{ij} =\frac{75}{64}k^{3/2}\sqrt{\frac{N_a T}{\pi }}\sqrt{\frac{M_i +M_j }{2 M_i M_j }}\frac{1}{\overline{\Omega}_{ij}^{(2,2)} }\), \(A_{ik}^\ast =\frac{\overline{\Omega}_{ik}^{(2,2)} }{\overline{\Omega}_{ik}^{(1,1)} }\) and \(B_{ik}^\ast =\frac{5 \overline{\Omega}_{ik}^{\left({1,2} \right)} -4 \overline{\Omega}_{ik}^{(1,3)} }{\overline{\Omega}_{ik}^{(1,1)} }\)

The internal conductivity due to the effect of internal degrees of freedom is taken into account with the Eucken correction [10, 61, 62]:

$$ \lambda _{\rm int} =\sum_{i=1}^N {\lambda _{{\rm int} i} \left({\sum_{j=1}^N {\frac{D_{ii} \left(1 \right)}{D_{ij} \left(1 \right)}\frac{x_j }{x_i }} } \right)} ^{-1} $$
(6)

with the internal conductivity of the i chemical species \(\lambda _{{\rm int} i} =\frac{PD_{ii} \left(1 \right)}{T}\left({\frac{C_{p i} }{R}-\frac{5}{2}} \right)\) and the use of the first approximation for the binary diffusion coefficients:

$$ D_{ij} \left(1 \right)=\frac{3}{8}\left({kT} \right)^{3/2}\frac{1}{P\overline{\Omega}_{ij}^{(1,1)} }\sqrt{\frac{Na\left({M_i +M_j } \right)}{2\pi \left({M_i M_j } \right)}} $$
(7)

The formulation of the chemical reaction thermal conductivity was developed by Butler and Brokaw [65] and is written as:

$$ \lambda _{\rm react} =-\frac{1}{R T^{2}}\frac{\left| {{\begin{array}{llll} {A_{11} }& {\cdots}& {A_{1\mu } }& {\Delta H_1 } \\ {\cdots}& & & \\ {A_{\mu 1} }& {\cdots}& {A_{\mu \mu } }& {\Delta H_\mu } \\ {\Delta H_1 }& & {\Delta H_\mu }& 0 \\ \end{array} }} \right|}{\left| {{\begin{array}{lll} {A_{11} }& {\cdots}& {A_{1\mu } } \\ {\cdots}& & \\ {A_{\mu 1} }& & {A_{\mu \mu } } \\ \end{array} }} \right|} $$

with \(A_{ ij} =\sum_{k=1}^{\upsilon-1} {\sum_{l=k+1}^\upsilon {\frac{R T}{ P D_{kl} \left(1 \right)}} } x_k x_l \left({\frac{a_{ik} }{x_k }-\frac{a_{il} }{x_l }} \right)\left({\frac{a_{jk} }{x_k }-\frac{a_{jl} }{x_l }} \right)\) i reaction can be written as \(\sum_{k=1}^N {a_{ik} B^{k}} =0\) where B k is the symbol of the k chemical species. The μ reaction that we have to take into account must be linearly independent. For i reaction the enthalpy variation ΔH i is ΔH i = ∑ ν j=1 a ij H j where H j is the specific enthalpy of the j chemical species.

Appendix C. Chemical Composition

Fig. a
figure 6

Chemical composition versus temperature at two pressures (1, 30 atm) for a plasma formed of 100% Ag

Fig. b
figure 7

Chemical composition versus temperature at two pressures (1, 30 atm) for a plasma formed of 50% Ag and 50% SiO2 (wp)

Fig. c
figure 8

Chemical composition versus temperature at two pressures (1, 30 atm) for a plasma formed of 100% SiO2

Rights and permissions

Reprints and permissions

About this article

Cite this article

André, P., Bussière, W. & Rochette, D. Transport Coefficients of Ag–SiO2 Plasmas. Plasma Chem Plasma Process 27, 381–403 (2007). https://doi.org/10.1007/s11090-007-9086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-007-9086-y

Keywords

PACS

Navigation