Skip to main content
Log in

Effect of Lead Content in Used Wood Fuel on Furnace Wall Corrosion of 16Mo3, 304L and Alloy 625

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Corrosion of furnace wall tubes is a problem often caused by the use of corrosive fuels. The relatively high contents of lead, zinc, alkali metals and chlorides in these fuels are believed to contribute to the corrosion. Initial corrosion as a function of lead content in a wood-based fuel was studied for three materials: 16Mo3, 304L and Alloy 625. The materials were exposed for 8 h in a laboratory combustion test rig at a position resembling furnace wall conditions. The metal temperatures investigated were 350 and 400 °C. Increasing the lead content in the fuel or the temperature accelerated the corrosion rate of 16Mo3. It is proposed that lead and lead oxides in deposits react with iron chloride to form lead chloride, which when combined with alkali chlorides results in a very corrosive deposit containing low melting salt mixtures. Negligible corrosion was observed for 304L and Alloy 625.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. J. Grabke, E. Reese and M. Spiegel, Corrosion Science 37, 1995 (1023).

    Article  Google Scholar 

  2. T. Jonsson, N. Folkeson, J.-E. Svensson, L.-G. Johansson and M. Halvarsson, Corrosion Science 53, 2011 (2233).

    Article  Google Scholar 

  3. J. Pettersson, H. Asteman, J.-E. Svensson and L.-G. Johansson, Oxidation of Metals 64, 2005 (23).

    Article  Google Scholar 

  4. D. Bankiewicz, P. Yrjas, D. Lindberg and M. Hupa, Corrosion Science 66, 2013 (225).

    Article  Google Scholar 

  5. D. Bankiewicz, S. Enestam, P. Yrjas and M. Hupa, Fuel Processing Technology 105, 2013 (89).

    Article  Google Scholar 

  6. Y. Alipour, P. Henderson and P. Szakálos, Materials and Corrosion 65, 2014 (217).

    Article  Google Scholar 

  7. Y. Alipour, A. Talus, P. Henderson and R. Norling, Fuel Processing Technology 138, 2015 (805).

    Article  Google Scholar 

  8. B. Strömberg and S. S. Herstad, The Fuel Handbook 2012, (Stockholm, Värmeforsk, 2012).

    Google Scholar 

  9. S. Enestam, R. Backman, K. Mäkelä and M. Hupa, Fuel Processing Technology 105, 2013 (161).

    Article  Google Scholar 

  10. Y. Alipour and P. Henderson, Corrosion Engineering, Science and Technology 50, 2015 (355).

    Article  Google Scholar 

  11. A. Talus, Y. Alipour, R. Norling and P. Henderson, Materials and Corrosion 67, 2016 (683).

    Article  Google Scholar 

  12. E. M. Levin, C. R. Robbins and H. F. McMurdie, Phase diagrams for Ceramists, (The American Ceramic Society, Columbus, 1969).

    Google Scholar 

  13. N. Folkeson, L.-G. Johansson and J.-E. Svensson, Journal of Electrochemical Society 154, 2007 (C515).

    Article  Google Scholar 

  14. Y. Alipour, P. Viklund and P. Henderson, VGB PowerTech 12, 2012 (96).

    Google Scholar 

  15. M. Spiegel, Materials and Corrosion 50, 1999 (373).

    Article  Google Scholar 

  16. I. Barin, Thermochemical Data of Pure Substances, third edition. 1995, Weinheim: VCH (1995).

  17. M. Montgomery and E. e. Maahn, in Eurocorr 97, Trondheim, ed: European Federation of Corrosion, 1997, Vol II, pp. 41-46.

  18. D. Lindberg, J. Niemi, M. Engblom, P. Yrjas, T. Laurén and M. Hupa, Fuel Processing Technology 141, 2016 (285).

    Article  Google Scholar 

  19. J. Pettersson, J.-E. Svensson and L.-G. Johansson, Oxidation of Metals 72, 2009 (159).

    Article  Google Scholar 

  20. S. Enestam, K. Mäkelä, R. Backman and M. Hupa, Energy & Fuels 25, 2011 (1970).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by the Swedish Energy Agency, the Swedish Competence Centre for High Temperature Corrosion (HTC) and the Swedish Energy Research Centre, Energiforsk. The authors are grateful for the support. Fredrik Niklasson and Daniel Ryde are acknowledged for performing the exposures in the combustion test rig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Talus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talus, A., Norling, R., Wickström, L. et al. Effect of Lead Content in Used Wood Fuel on Furnace Wall Corrosion of 16Mo3, 304L and Alloy 625. Oxid Met 87, 813–824 (2017). https://doi.org/10.1007/s11085-017-9727-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9727-3

Keywords

Navigation