Skip to main content
Log in

Modes of Deposit-Induced Accelerated Attack of MCrAlY Systems at 1100 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The reaction of cast NiCoCrAlY alloys with oxide–sulfate deposits in CO2–H2O–O2 was studied at 1100 °C. The minimum Al concentration needed to form an external Al2O3 scale was increased compared with deposit-free exposures, as Al2O3-forming compositions transitioned to internal Al2O3 and external Cr2O3 growth in the presence of certain deposits. Model deposits were used to investigate the role of each constituent in the complex reaction morphology observed with an industrial fly-ash. Two main modes of degradation were identified, which involved Al2O3 dissolution in molten Na silicate and solid-state Al2O3 reaction with CaO. Both led to enhanced Al consumption and promoted non-selective oxidation. Additions of Al2O3 or SiO2 decreased the CaO reactivity due to the formation of aluminates or silicates, while Na2SO4, on the contrary, enhanced the degradation by providing rapid mass transport in the molten state, and reduced alloy/scale adherence. A systematic study of the role of phase fractions and phase compositions in the γ-(Ni,Co) + β-(Ni,Co)Al metal system is reported, with the aim of providing guidance in coating design. In particular, high γ fractions and Cr concentrations, which offer optimal hot corrosion resistance, were most susceptible to degradation by oxide–sulfate deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N. J. Simms, P. J. Kilgallon and J. E. Oakey, Energy Materials 2, 154 (2007).

    Article  Google Scholar 

  2. G. Hammond, S. S. Ondo Akwe and S. Williams, Energy 36, 975 (2011).

    Article  Google Scholar 

  3. B. M. Jenkins, L. L. Baxter, T. R. Miles Jr. and T. R. Miles, Fuel Processing Technology 54, 17 (1998).

    Article  Google Scholar 

  4. C. G. Levi, J. W. Hutchinson, M.-H. Vidal-Setif and C. A. Johnson, MRS Bulletin 37, 932 (2012).

    Article  Google Scholar 

  5. J. P. Bons, J. Crosby, J. E. Wammack, B. I. Bentley and T. H. Fletcher, Journal of Engineering for Gas Turbines and Power 129, 135 (2007).

    Article  Google Scholar 

  6. B.M. White, R.W. Ames and P. Burke, in Proceedings of the ASME Turbo Expo 2013, San Antonio (2013).

  7. Clean Coal Technology Topical Report Number 24, NETL (US Department of Energy, August 2006)

  8. R. C. Reed, The Superalloys—Fundamentals and Applications, (Cambridge University Press, New York, 2006).

    Google Scholar 

  9. S. Bose, High Temperature Coatings, (Butterworth-Heinemann, Amsterdam, 2007).

    Google Scholar 

  10. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit, Progress in Materials Science 46, 505 (2001).

    Article  Google Scholar 

  11. B. Gleeson, Journal of Propulsion and Power 22, 375 (2006).

    Article  Google Scholar 

  12. A. G. Evans, D. R. Clarke and C. G. Levi, Journal of the European Ceramic Society 28, 1405 (2008).

    Article  Google Scholar 

  13. D. R. Clarke, M. Oechsner and N. P. Padture, MRS Bulletin 37, 891 (2012).

    Article  Google Scholar 

  14. R. Darolia, International Materials Reviews 58, 315 (2013).

    Article  Google Scholar 

  15. J. L. Smialek, F. A. Archer and R. G. Garlick, JOM 46, 39 (1994).

    Article  Google Scholar 

  16. M. P. Borom, C. A. Johnson and L. A. Peluso, Surface & Coatings Technology 86, 116 (1996).

    Article  Google Scholar 

  17. C. Mercer, S. Faulhaber, A. G. Evans and R. Darolia, Acta Materialia 53, 1029 (2005).

    Article  Google Scholar 

  18. S. Kramer, J. Yang, C. G. Levi and C. A. Johnson, Journal of the American Ceramic Society 89, 3167 (2006).

    Article  Google Scholar 

  19. J. A. Goebel, F. S. Pettit and G. W. Goward, Metallurgical Transactions 4, 261 (1973).

    Article  Google Scholar 

  20. J. Stringer, Annual Review of Materials Science 7, 477 (1977).

    Article  Google Scholar 

  21. R. Rapp, Corrosion 42, 568 (1986).

    Article  Google Scholar 

  22. G. Goward, Journal of Engineering for Gas Turbines and Power 2, 421 (1986).

    Article  Google Scholar 

  23. N. Birks, G. Meier and F. Pettit, Chapter 8 in Introduction to the High Temperature Oxidation of Metals, 2nd ed, (Cambridge University Press, Cambridge, 2006), pp. 205–252.

    Book  Google Scholar 

  24. F. Pettit, Oxidation of Metals 76, 1 (2011).

    Article  Google Scholar 

  25. T. Gheno, G. H. Meier and B. Gleeson, Oxidation of Metals 84, 185 (2015).

    Article  Google Scholar 

  26. T. Gheno and B. Gleeson, Oxidation of Metals 86, 385 (2016).

    Article  Google Scholar 

  27. T. Gheno and B. Gleeson, Kinetics of Al2O3-scale growth by oxidation and dissolution in molten silicate, submitted to Oxidation of Metals.

  28. Materials Preparation Center, Ames Laboratory USDOE, Ames, IA.

  29. Evans Analytical Group, Liverpool, NY.

  30. U.R. Kattner, in Calphad and alloy thermodynamics, TMS, Warrendale, 2002

  31. B. Sundman, B. Jansson and J.-O. Andersson, Calphad 9, 153 (1985).

    Article  Google Scholar 

  32. T. Gheno, X. L. Liu, G. Lindwall, Z. K. Liu and B. Gleeson, Science and Technology of Advanced Materials 16, 055001 (2015).

    Article  Google Scholar 

  33. X. L. Liu, G. Lindwall, T. Gheno and Z. K. Liu, Calphad 52, 125 (2016).

    Article  Google Scholar 

  34. V. K. Tolpygo and D. R. Clarke, Materials at High Temperatures 17, 59 (2000).

    Article  Google Scholar 

  35. FToxid 2010 database from FactSage, phase diagram retrieved on http://www.crct.polymtl.ca/fact/documentation/, October 14, 2015

  36. C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, 1782 (1971).

    Article  Google Scholar 

  37. T. Gheno, B.-C. Zhou, A. Ross, X. Liu, G. Lindwall, Z.-K. Liu, B. Gleeson, A thermodynamic approach to guide reactive element doping: Hf additions to NiCrAl, submitted to Oxidation of Metals

  38. M. N. Task, B. Gleeson, F. S. Pettit and G. H. Meier, Oxidation of Metals 80, 125 (2013).

    Article  Google Scholar 

  39. A. Chyrkin, W. G. Sloof, R. Pillai, T. Galiullin, D. Gruener, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 32, 102 (2015).

    Article  Google Scholar 

  40. M. Schiek, L. Niewolak, W. Nowak, G. H. Meier, R. Vaßen and W. J. Quadakkers, Oxidation of Metals 84, 661 (2015).

    Article  Google Scholar 

  41. I. Barin, Thermochemical Data of Pure Substances, 2nd ed, (VCH, Weinheim, 1993).

    Google Scholar 

  42. D. Freyer and W. Voigt, Monatshefte für Chemie 134, 693 (2003).

    Article  Google Scholar 

  43. P. D. Jose, D. K. Gupta and R. A. Rapp, Journal of the Electrochemical Society 132, 735 (1985).

    Article  Google Scholar 

  44. M. G. Lawson, F. S. Pettit and J. R. Blachere, Journal of Materials Research 8, 1964 (1993).

    Article  Google Scholar 

  45. J. G. Smeggil, A. W. Funkenbusch and N. S. Bornstein, Metallurgical Transactions A 17, 923 (1986).

    Article  Google Scholar 

  46. J. L. Smialek, D. T. Jayne, J. C. Schaeffer and W. H. Murphy, Thin Solid Films 253, 285 (1994).

    Article  Google Scholar 

  47. P. Y. Hou and J. Stringer, Oxidation of Metals 38, 323 (1992).

    Article  Google Scholar 

  48. E. M. Levin, C. R. Robbins and H. F. McMurdie (eds.), Phase Diagrams for Ceramists, vol. I, (The American Ceramic Society, Columbus, 1964).

    Google Scholar 

  49. R. Melzer and W. Depmeier, Crystal Research and Technology 31, 459 (1996).

    Article  Google Scholar 

  50. S. M. Antao, I. Hassan and J. B. Parise, The Canadian Mineralogist 42, 1047 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy through the University Turbine Systems Research (UTSR) Program run by the National Energy Technology Laboratory, award number DE-FE0007271, Seth Lawson, Project Manager. The authors thank Morgan Skapik and Kevin Glorius-Patrick for assistance in preparing the corrosion experiments, Gerald Meier and Nathaniel Bohna for useful discussions, and Xuan Liu and Zi-Kui Liu at the Pennsylvania State University for the phase equilibrium calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Gheno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheno, T., Gleeson, B. Modes of Deposit-Induced Accelerated Attack of MCrAlY Systems at 1100 °C. Oxid Met 87, 249–270 (2017). https://doi.org/10.1007/s11085-016-9669-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9669-1

Keywords

Navigation