Skip to main content
Log in

Oxide Growth Characterization During Short-Time Oxidation of a Commercially Available Chromia-Forming Alloy (HR-120) in Air at 1,050 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This study focuses on the oxidation behavior of commercially available HR120 in air at 1,050 °C from 30 min to 100 h. The oxidation kinetics were first studied by thermogravimetry and isothermal exposure. The oxidation products were fully characterized using ex and in situ X-ray diffraction (XRD) and FEG-SEM observations. HR120 experienced at 1,050 °C a non protective transient stage and formed a multilayered oxide scale (SiO2–Cr2O3–XCr2O4 with X = Mn and/or Fe, Ni). A series of complementary characterization methods (gold and isotopic marker experiments, photoelectrochemistry (PEC)) were implemented to elucidate the oxidation mechanism. The study identified a n-type semi-conductivity accompanied by an inward growth of the scale. Thus, assuming that diffusion in the oxide scale controlled chromia-scale growth, the oxygen vacancy was the major point defect governing the solid state transport. This result was attributed to the presence of a MnCr2O4 spinel layer at the top of chromia that strongly decreased the oxygen pressure at the interface spinel/chromia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. HAYNES, http://www.haynesintl.com.

  2. V. P. Deodeshmukh, S. J. Matthews, and D. L. Klarstrom, International Journal of Hydrogen Energy 36, 4580 (2011).

    Article  CAS  Google Scholar 

  3. C. Wood, I. G. Wright, T. Hodgkiess, and D. P. Whittle, Werkstoffe und Korrosion 21, 900 (1970).

    Article  CAS  Google Scholar 

  4. A. de S. Brasunas, J. T. Gow, O. E. Harder, 30th Annual Convention of the American Society for Metals, Proceeding Vol. 46 p. 870 (1946).

  5. J. E. Croll and G. R. Wallwork, Oxidation of Metals 4, 1972 (121).

    Article  CAS  Google Scholar 

  6. Kofstad, High Temperature Corrosion, (Elsevier New York, 1988).

    Google Scholar 

  7. B. Chattopadhyay, and G. C. Wood, Oxidation of Metals 2, 373 (1970).

    Article  CAS  Google Scholar 

  8. F. H. Stott, P. K. N. Bartlett, and G. C. Wood, Material Science Engineering 8, 163 (1987).

    Article  Google Scholar 

  9. D. Renusch, B. Veal, K. Natesan, and M. Grimsditch, Oxidation of Metals 46, 365 (1996).

    Article  CAS  Google Scholar 

  10. J. Zurek, D. J. Young, E. Essuman, M. Hansel, H. J. Penkalla, L. Niewolak, and W. J. Quadakkers, Materials Science and Engineering. A 477, 259 (2008).

    Article  Google Scholar 

  11. Y. Wouters, A. Galerie, and J-P. Petit, Journal of Electrochemical Society 154, C587 (2007).

    Article  CAS  Google Scholar 

  12. A. Srisrual, S. Coindeau, A. Galerie, J-P. Petit, and Y. Wouters, Corrosion Science 51, 562 (2009).

    Article  CAS  Google Scholar 

  13. A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J-P. Petit, and L. Antoni, Materials at High Temperature 22, 105 (2005).

    Article  CAS  Google Scholar 

  14. J.-P. Petit, M. Mermoux, Y. Wouters, A. Galerie, and C. Chemarin, Materials Science Forum 461–464, 681 (2004).

    Article  Google Scholar 

  15. S. Guillou, C. Cabet, C. Desgranges, L. Marchetti, and Y. Wouters, Oxidation of Metals 76, 193 (2011).

    Article  CAS  Google Scholar 

  16. H. Hindam, and D. P. Whittle, Oxidation of Metals 18, 245 (1982).

    Article  CAS  Google Scholar 

  17. D. L. Douglass, and J. S. Armijo, Oxidation of Metals 2, 207 (1970).

    Article  CAS  Google Scholar 

  18. R. E. Lobnig, H. P. Schmidt, K. Hennesen, and H. J. Grabke, Oxidation of Metals 37, 81 (1992).

    Article  CAS  Google Scholar 

  19. L. Couture, PhD Thesis, INP Grenoble (2011).

  20. G. C. Wood, T. Hodgkiess, and D. P. Whittle, Corrosion Science 6, 1966 (129).

    Article  CAS  Google Scholar 

  21. X. Ledoux, PhD Thesis, Université de Lorraine (2012).

  22. L. Marchetti, S. Perrin, Y. Wouters, F. Martin, and M. Pijolat, Electrochimica Acta 55, 5384 (2010).

    Article  CAS  Google Scholar 

  23. F. Tran, P. Blaha, K. Schwarz, and P. Novák, Physical Review B 74, 155108 (2006).

    Article  Google Scholar 

  24. D. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier Corrosion Series, Amsterdam, 2008).

    Google Scholar 

  25. A. Holt, and P. Kofstad, Solid State Ionics 69, 127 (1994).

    Article  CAS  Google Scholar 

  26. S. C. Tsai, A. M. Huntz, and C. Dolin, Material Science and Engineering A 212, 6 (1996).

    Article  Google Scholar 

  27. A. C. S. Sabioni, B. Lesage, A. M. Huntz, J. C. Pivin, and C. Monty, Philosophical Magazine A 66, 333 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Ludovic Mouton and Sandrine Mathieu from SCMEM of the University of Nancy for Microscopic observations, Sylvain Weber from CCMEM of the Jean Lamour Institute for SIMS analyses, Sébastien Chevalier and Nathalie Roudergues from University of Dijon for the 18O marker analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mathieu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledoux, X., Mathieu, S., Vilasi, M. et al. Oxide Growth Characterization During Short-Time Oxidation of a Commercially Available Chromia-Forming Alloy (HR-120) in Air at 1,050 °C. Oxid Met 80, 25–35 (2013). https://doi.org/10.1007/s11085-013-9367-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9367-1

Keywords

Navigation