Skip to main content
Log in

The Effect of Water Vapor on the Initial Stages of Oxidation of the FeCrAl Alloy Kanthal AF at 900 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The effect of water vapor on the initial stages of oxidation of the FeCrAl alloy Kanthal AF is reported. Polished samples were exposed isothermally at 900 °C for 1, 24, 72 and 168 h in a well-controlled environment consisting of dry O2 or O2 + 40% H2O. The samples were investigated using a combination of gravimetry and several surface-analytical techniques, including XRD, SEM, EDX, FIB, AES and TEM. The presence of water vapor significantly accelerates oxidation during the first 72 h. A two-layered oxide forms in both the dry and wet environments. The bottom layer consists of inward-growing α-Al2O3 while the outer layer initially consists of outward-growing γ-Al2O3. A straight and narrow Cr-enriched band is present at the top of the lower (α-Al2O3) oxide, corresponding to the original sample surface. In dry O2, the top (γ-Al2O3) layer is converted into a mixture of γ-Al2−x (Mg,Fe) x O3−(x/2), MgAl2O4 and α-Al2O3. This transformation does not occur in O2 + H2O. The initial acceleration of oxidation by H2O is attributed to the stabilization of the outward-growing γ-alumina layer by the hydroxylation of the γ-Al2O3 surface. A schematic mechanism of the early stages of oxidation of FeCrAl alloys is presented, emphasizing the influence of water vapor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Berthome, E. N’Dah, Y. Wouters, and A. Galerie, Temperature dependence of metastable alumina formation during thermal oxidation of FeCrAl foils. Materials and Corrosion 56, 389–392 (2005).

    Article  CAS  Google Scholar 

  2. J. R. Nicholls, M. J. Bennett, and R. Newton, A life prediction model for the chemical failure of FeCrAlRE alloys: preliminary assessment of model extension to lower temperatures. Materials at High Temperatures 20, 429–438 (2003).

    CAS  Google Scholar 

  3. H. Josefsson, F. Liu, J.-E. Svensson, M. Halvarsson, and L.-G. Johansson, Oxidation of FeCrAl alloys at 500–900°C in dry O2. Materials and Corrosion 56, 801–806 (2005).

    Article  CAS  Google Scholar 

  4. M. Boualam, G. Beranger, and M. Lambertin, Oxidation of an alumina-forming alloy: Morphological and structural study. Microsc. Oxid. 2, Proc. Int. Conf., 2nd, 243–252 (1993).

  5. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, 1988) 408–412.

  6. F. H. Stott, G. C. Wood, and J. Stringer, The influence of alloying elements on the development and maintenance of protective scales. Oxidation of Metals 44, 113–145 (1995).

    Article  CAS  Google Scholar 

  7. P. F. Tortorelli, K. L. More, E. D. Specht, B. A. Pint, and P. Zschack, Growth stress – microstructure relationships for alumina scales. Materials at High Temperatures 20, 303–309 (2003).

    CAS  Google Scholar 

  8. M. Schütze, Failure of oxide scales on advanced materials due to the presence of stresses. High Temperature Corrosion of Advanced Materials and Protective Coatings 39–49 (1992).

  9. R. Newton, M. J. Bennett, J. P. Wilber, J. R. Nicholls, D. Naumenko, W. J. Quaddakkers, H. Al-Badairy, G. Tatlock, G. Strehl, G. Borchardt, A. Kolb-Telieps, B. Jönsson, A. Westerlund, V. Guttermann, M. Maier, and P. Beaven, The oxidation lifetime of commercial FeCrAl(RE) alloys. European Federation of Corrosion Publications 34, 15–36 (2001).

    CAS  Google Scholar 

  10. J. R. Nicholls, R. Newton, M. J. Bennett, H. E. Evans, H. Al-Badairy, G. J. Tatlock, D. Naumenko, W. J. Quaddakkers, G. Strehl, and G. Borchardt, Development of a life prediction model for the chemical failure of FeCrAl(RE) alloys in oxidizing environments. European Federation of Corrosion Publications 34, 83–106 (2001).

    CAS  Google Scholar 

  11. H. Al-Badairy, G. J. Tatlock, and M. J. Bennett, A comparison of breakaway oxidation in wedge-shaped and parallel sided coupons of Fe–Cr–Al alloys. Materials at High Temperatures 17, 101–107 (2000).

    CAS  Google Scholar 

  12. K. Onal, M. C. Maris-Sida, G. H. Meier, and F. S. Pettit, Water vapour effects on the cyclic oxidation resistance of alumina forming alloys. Materials at High Temperatures (2003).

  13. H. Al-Badairy, and G. J. Tatlock, The influence of moisture content of the atmosphere on alumina scale formation and growth during high temperature oxidation of PM2000. Materials at High Temperatures 17, 133–137 (2000)

    CAS  Google Scholar 

  14. A. Kolb-Telieps, U. Miller, H. Al-Badairy, G. J. Tatlock, D. Naumenko, W. J. Quadakkers, G. Strehl, G. Borchardt, R. Newton, J. R. Nicholls, M. Maier, and D. Baxter, The Role of Bioxidant Corrodents on the Lifetime Behavior of FeCrAl(RE) Alloys. Lifetime modelling of high temperature corrosion processes, proceedings of an EFC workshop 34, 123–134 (2001).

    CAS  Google Scholar 

  15. H. Buscail, S. Heinze, Ph. Dufour, and J. P. Larpin, Water-Vapor-Effect on the Oxidation of Fe-21.5wt.%Cr-5.6wt.Al at 1000°C. Oxidation of Metals 47, 445–465 (1997).

    Article  CAS  Google Scholar 

  16. J. -R. Regina, J. N. DuPont, and A. R. Marder, The effect of Water Vapor on passive-Layer Stability and Corrosion Behavior of Fe–Al–Cr Base Alloys. Oxidation of Metals 61, 69–90 (2004).

    Article  CAS  Google Scholar 

  17. I. Kvernes, M. Oliveira, and P. Kofstad, High temperature oxidation of Fe–13Cr–xAl alloys in air/water vapor mixtures. Corrosion Science 17, 237–52 (1977).

    Article  CAS  Google Scholar 

  18. R. Janakiraman, G. H. Meier, and F. S. Pettit, The effect of water vapour on the oxidation of alloys that develop alumina scales for protection. Tri-Service Conference on Corrosion, Proceedings, Wrightsville Beach, N. C., 1997 2, 20/1–20/15 (1997).

  19. R. Bachorczyk, and R. Fordham, Long-term, cyclic oxidation behaviour of alumina- and chromia- forming alloys. Diffusion and Defect Data–Solid State Data, Pt. A: Defect and Diffusion Forum 237–240, 1107–1114 (2005).

    Google Scholar 

  20. F. Liu, H. Josefsson, J.-E. Svensson, L.-G. Johansson, and M. Halvarsson, TEM investigation of the base oxide formed on FeCrAl at 900°C in dry O2 and O +2 40%H2O. Materials at High Temperatures 22(n3–4), 521–526 (2005).

    CAS  Google Scholar 

  21. H. Josefsson, F. Liu, J.-E. Svensson, M. Halvarsson, and L.-G. Johansson, The Formation of Oxide Scale on FeCrAl at 900°C in dry O2 and O +2 40% H2O. Electro Chemical Society, High Temperature Corrosion and Materials Chemistry V, 56–66 (2005).

  22. H. J. Grabke, M. S. Siegers, and V. K. Tolpygo, Mechanisms of reactive element and impurity element effects in the oxidation of Fe–Cr–Al alloys. Int. Conf. on Metal supported automotive Catalytic Converters (Wuppertal, Germany, 1997).

  23. I. M. Allam, D. P. Whittle, and J. Stringer Improvements in oxidation resistance by dispersed oxide addition: alumina-forming alloys. Oxidation of Metals 13, 381–401 (1979).

    Article  CAS  Google Scholar 

  24. F. Liu, H. Josefsson, J.-E. Svensson, L.-G. Johansson, and M. Halvarsson, SEM investigation of reactive element particles on the surface of Kanthal AF oxidized at 900 °C. International Corrosion Congress in China 2005 (2005).

  25. F. Liu, H. Josefsson, J.-E. Svensson, L.-G. Johansson, and M. Halvarsson, Early stages of the oxidation of the FeCrAl alloy Kanthal AF at 900 °C; a detailed microstructural investigation, to be published.

  26. J. Mayer, H. J. Penkalla, A. Dimyati, M. Dani, M. Untoro, D. Naumenko, and W. J. Quaddakkers Time dependence of Mg-incorporation in alumina scales on FeCrAl alloys studied by FIB-prepared TEM cross sections. Materials at High Temperatures 20, 413–419 (2003).

    Article  CAS  Google Scholar 

  27. A. Andoh, S. Taniguchi, and T. Shibata, TEM observation of phase transformations of alumina scales formed on Al-deposited Fe-Cr-Al foils. Materials Science Forum 369–372, 303–310 (2001)

    Article  Google Scholar 

  28. H. El Kadiri, R. Molins, Y. Bienvenu and M. F. Horstemeyer, Abnormal high growth rates of metastable aluminas on FeCrAl alloys. Oxidation of Metals 64, 63–97 (2005).

    Article  CAS  Google Scholar 

  29. H. Asteman, J.-E. Svensson, and L.-G. Johansson, Evidence for chromium evaporation influencing the oxidation of 304L: the effect of temperature and flow rate. Oxidation of Metals 57, 193–216 (2002).

    Article  CAS  Google Scholar 

  30. Z. Lodziana, N.-Y. Topsoe, and J. K. Norskov, A negative surface energy for alumina. Nature Materials 3, 289–293 (2004).

    Article  CAS  Google Scholar 

  31. L. K. Hudson, C. Misra, A. J. Perrotta, K. Wefers, and F. S. Williams, Aluminium Oxide. Ullmann’s Encyclopedia of Industrial Chemistry (2002).

Download references

Acknowledgements

The work was performed within the Swedish High Temperature Corrosion Centre (HTC). The authors wish to acknowledge the support from Kanthal AB, Sandvik Materials Technology AB and the National Graduate School in Materials Science at Chalmers. A grant from Knut and Alice Wallenberg Foundation for acquiring the FEG-SEM instrument is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Götlind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götlind, H., Liu, F., Svensson, JE. et al. The Effect of Water Vapor on the Initial Stages of Oxidation of the FeCrAl Alloy Kanthal AF at 900 °C. Oxid Met 67, 251–266 (2007). https://doi.org/10.1007/s11085-007-9055-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-007-9055-0

Keywords

Navigation