Skip to main content
Log in

Temperature-dependent optical properties of TiO2 nanoparticles: a study of band gap evolution

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this study, we present the first comprehensive investigation of the temperature-dependent band gap energy of anatase TiO2 nanoparticles, utilizing transmission measurements in the range of 10–300 K. X-ray diffraction pattern exhibited nine peaks related to tetragonal crystal structure. Scanning electron microscope image showed that the nanoparticles with the dimensions of 25–50 nm were found as micrometer sized agglomerated. When the spectrum obtained as a result of the transmission measurements was analyzed, it was seen that the band gap energy decreased from 3.29(5) to 3.26(6) eV as the temperature was increased from 10 to 300 K. Temperature-band gap dependence was analyzed using Varshni and O’Donnell-Chen optical models and optical parameters of the TiO2 nanoparticles like absolute zero band gap energy, rate of change of band gap with temperature and average phonon energy were reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  • Cha, S.H., An, C.H., Cho, S.T., Kim, D.G., Kwon, D.S., Lim, J.I., Jeon, W., Hwang, C.S.: Scaling the Equivalent Oxide Thickness by employing a TiO2 Thin Film on a ZrO2-Al2O3-Based Dielectric for further scaling of dynamic Random Access Memory. Phys. Status Solidi RRL. 13, 1900282 (2019)

    Article  Google Scholar 

  • Cullity, B.D., Stock, S.R.: Elements of X-Ray Diffraction. Prentice Hall, New Jersey (2001)

    Google Scholar 

  • Drikvand, T., Zadsar, M., Neghabi, M., Amighian, J.: Design, fabrication and characterization of nanostructured SiO2/TiO2/ITO conductive Bragg reflectors for optoelectronic applications. Optik. 270, 169990 (2022)

    Article  ADS  Google Scholar 

  • Elshahawy, A.M., Elkatlawy, S.M., Shalaby, M.S., Guan, C., Wang, J.H.: Surface-Engineered TiO2 for high-performance flexible supercapacitor applications. J. Electron. Mater. 52, 1347–1356 (2023)

    Article  ADS  Google Scholar 

  • Frohlich, K.: TiO2-based structures for nanoscale memory applications, Mat. Sci. Semicon. Proc. 16, 1186–1195 (2013)

  • Huang, T.W., Lin, L.Y., Hong, S.T.: Decoration of TiO2 nanoparticles on TiO2 microcone array with holes as photoanodes of fiber-shaped dye-sensitized solar cells, Mat. Sci. Semicon. Proc. 136, 106152 (2021)

  • Isik, M., Gasanly, N.M., Darvishov, N.H., Bagiev, V.E.: Temperature dependent bandgap in NaBi(WO4)2 single crystals. Optik. 258, 168811 (2022)

    Article  ADS  Google Scholar 

  • Ivanov, S., Barylyak, A., Besaha, K., Bund, A., Bobitski, Y., Wojnarowska-Nowak, R., Yaremchuk, I., Kus-Liskiewicz, M.: Synthesis, characterization, and Photocatalytic Properties of Sulfur- and Carbon-Codoped TiO2 nanoparticles. Nanoscale Res. Lett. 11, 140 (2016)

    Article  ADS  Google Scholar 

  • Keshari, A.K., Choudhary, P., Shukla, V.K.: Precursor induced evolution in single anatase phase synthesis of TiO2 nanoparticles for water treatment and dye-sensitized solar cell. Phys. B. 631, 413716 (2022)

    Article  Google Scholar 

  • Khan, M.A.A., Siwach, R., Kumar, S., Alhazaa, A.N.: Role of Fe doping in tuning photocatalytic and photoelectrochemical properties of TiO2 for photodegradation of methylene blue, opt. Laser Technol. 118, 170–178 (2019)

    Article  ADS  Google Scholar 

  • Khan, M.A.A., Nain, P., Ahmed, J., Ahamed, M., Kumar, S.: Characterization and photocatalytic performance of hydrothermally synthesized Cu-doped TiO2 NPs. Opt. Mater. 133, 112983 (2022)

    Article  Google Scholar 

  • Kumari, Y., Jangir, L.K., Kumar, A., Kumar, M., Awasthi, K.: Luminescent and structural behaviour of Tb+ 3 ions doped TiO2 nanoparticles synthesized by facile sol-gel method. Phys. B. 602, 412465 (2021)

    Article  Google Scholar 

  • Lai, C.H., Lee, T.Y., Huang, J.S., Lee, K.W., Wang, Y.H.: The growth of solution-gelation TiO2 and its application to InAlAs/InGaAs metamorphic high-electron-mobility transistor, Mat. Sci. Semicon. Proc. 129, 105804 (2021)

  • Landi, S., Segundo, I.R., Afonso, C., Lima, O., Costa, M.F.M., Freitas, E., Carneiro, J.: Evaluation of band gap energy of TiO2 precipitated from titanium sulphate. Phys. B. 639, 414008 (2022)

    Article  Google Scholar 

  • Lee, C.Y., Rock, N.D., Islam, A., Scarpulla, M.A., Ertekin, E.: Electron-phonon effects and temperature dependence of the electronic structure of monoclinic beta-Ga2O3. APL Mater. 11, 011106 (2023)

    Article  ADS  Google Scholar 

  • Mazumder, J.T., Mayengbam, R., Nath, A., Sarkar, M.B.: Investigation of structural, optical and electrical properties of TiO2 thin film-nanowire-based device for photodetector application. Opt. Mater. 133, 112936 (2022)

    Article  Google Scholar 

  • Muckel, F., Lorenz, S., Yang, J., Nugraha, T.A., Scalise, E., Hyeon, T., Wippermann, S., Bacher, G.: Exciton-driven change of phonon modes causes strong temperature dependent bandgap shift in nanoclusters. Nat. Commun. 11, 4127 (2020)

    Article  ADS  Google Scholar 

  • Olivares, F., del Rio, R.S., Reyes, J., Peon, F., Henriquez, R., Hevia, S.A., Duran, B., Villalonga, R.: Enhanced photoconversion efficiency of hybrid TiO2/nox-MWCNT/Si photoanode for water splitting in neutral medium. Mater. Lett. 285, 129128 (2021)

    Article  Google Scholar 

  • Pankove, J.I.: Optical Processes in Semiconductors. Prentice-Hall, Englewood Cliffs, New Jersey (1971)

    Google Scholar 

  • Park, J., Saidi, W.A., Chorpening, B., Duan, Y.: Applicability of Allen-Heine-Cardona Theory on MOX Metal Oxides and ABO3 perovskites: Toward high-temperature Optoelectronic Applications. Chem. Mater. 34, 6108–6115 (2022)

    Article  Google Scholar 

  • Radha, E., Komaraiah, D., Sayanna, R., Sivakumar, J.: Photoluminescence and photocatalytic activity of rare earth ions doped anatase TiO2 thin films. J. Lumin. 244, 118727 (2022)

    Article  Google Scholar 

  • Rathore, N., Kulshreshtha, A., Shukla, R.K., Sharma, D.: Optical, structural and morphological properties of Fe substituted rutile phase TiO2 nanoparticles. Phys. B. 600, 412609 (2021)

    Article  Google Scholar 

  • Saha, B., Sarkar, K., Bera, A., Deb, K., Thapa, R.: Schottky diode behaviour with excellent photoresponse in NiO/FTO heterostructure. Appl. Surf. Sci. 418, 328–334 (2017)

    Article  ADS  Google Scholar 

  • Snvastava, S.K.: Crystal structure, microstructure, optical, dielectric, and magnetic properties of TiO2 nanoparticles. J. Mater. Sci. Mater. El. 33, 23506–23514 (2022)

    Article  Google Scholar 

  • Taleshi, F., Pahlavan, A.: Effect of rapid cooling time on optical absorption and band gap energy of TiO2 nanoparticles. J. Mater. Sci. Mater. Electron. 25, 2450–2455 (2014)

    Article  Google Scholar 

  • Thejas, K.K., Supin, K.K., Akshay, V.R., Arun, B., Mandal, G., Chanda, A., Vasundhara, M.: Effect of annealing time on structural, optical and magnetic properties of TiO2 nanoparticles. Opt. Mater. 134, 113178 (2022)

    Article  Google Scholar 

  • Vainorius, N., Kubitza, S., Lehmann, S., Samuelson, L., Dick, K.A., Pistol, M.E.: Temperature dependent electronic band structure of wurtzite GaAs nanowires. Nanoscale. 10, 1481–1486 (2017)

    Article  Google Scholar 

  • Wang, G., Bai, Z.W., Wu, H.C., Zhang, X.M., Li, J., Jin, M.J., Zhou, J.Y., Xie, E.Q., Pan, X.J.: A wire-shaped and high-sensitivity photoelectrochemical ultraviolet photodetector based on TiO2 nanotube arrays. Appl. Phys. Lett. 121, 111101 (2022)

    Article  ADS  Google Scholar 

  • Zeng, S.M., Zhang, Y., Zhang, Y., Li, Y.N., Tang, C.G., Li, K., Sun, J.Y., Deng, T.: A novel room temperature SO2 gas sensor based on TiO2/rGO buried-gate FET. Microelectron. Eng. 263, 111841 (2022)

    Article  Google Scholar 

  • Zhang, H., Qiao, X., Shen, Y., Moehl, T., Zakeeruddin, S.M., Gratzel, M., Wang, M.: Photovoltaic behaviour of lead methylammonium triiodide perovskite solar cells down to 80 K. J. Mater. Chem. A. 3, 11762–11767 (2015)

    Article  Google Scholar 

  • Zhu, K.R., Zhang, M.S., Hong, J.M., Yin, Z.: Size effect on phase transition sequence of TiO2 nanocrystal. Mat. Sci. Eng. A. 403, 87–93 (2005)

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study’s conception and design. The experiments and analysis of the experimental were performed by Mehmet Isik and Serdar Delice. The first draft of the manuscript was written by Mehmet Isik and Serdar Delice. The manuscript was reviewed by Nizami Gasanly. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mehmet Isik.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isik, M., Delice, S. & Gasanly, N. Temperature-dependent optical properties of TiO2 nanoparticles: a study of band gap evolution. Opt Quant Electron 55, 905 (2023). https://doi.org/10.1007/s11082-023-05138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05138-4

Keywords

Navigation