Skip to main content
Log in

New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this survey, the ionic currents along the microtubules equation handled by applying two different techniques. It describes the ionic transport throughout the intracellular environment. This phenomenon explains the behavior of many applications in a biological nonlinear dispatch line for ionic currents. Using two different analytical techniques on this equation allows us to get new forms of analytical solitary traveling wave solutions. The obtained solutions support many researchers concerned with the discussion of the physical properties of the ionic currents along microtubules. Microtubules are one of the main components of the cytoskeleton, and function in many operations, comprehensive constitutional backing, intracellular transmit, and DNA division. The thing which makes us applies this property in many applications for this model. The earned results demonstrate that the proposed methods are significantly powerful, evangelist, relaxing, suitable, and convenient for solving many nonlinear models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abazari, R.: Solitary-wave solutions of the Klein–Gordon equation with quintic nonlinearity. J. Appl. Mech. Tech. Phys. 54(3), 397–403 (2013)

    MathSciNet  MATH  ADS  Google Scholar 

  • Abazari, R.: General solution of a special class of nonlinear BBM-B equation by using the (G'/G)-expansion method. Romanian Rep. Phys. 66(2), 286–295 (2014)

    Google Scholar 

  • Abazari, R., Jamshidzadeh, S.: Exact solitary wave solutions of the complex Klein–Gordon equation. Optik 126(19), 1970–1975 (2015)

    ADS  Google Scholar 

  • Abbagari, S., Alphonse, H., Mukam, S.P., Serge, D.Y., Bouetou, T.B.: Miscellaneous optical solitons in magneto-optic waveguides associated to the influence of the cross-phase modulation in instability spectra. Phys. Scr. 96(4), 045216 (2021a)

    ADS  Google Scholar 

  • Abbagari, S., Douvagaï, D., Houwe, A., Doka, S.Y., Crepin, K.T.: M-shape and W-shape bright incite by the fluctuations of the polarization in a-helix protein. Phys. Scr. 96(8), 085501 (2021b)

    ADS  Google Scholar 

  • Abbagari, S., Houwe, A., Mukam, S.P., Rezazadeh, H., Doka, S.Y., Bouetou, T.B.: Optical solitons to the nonlinear Schrödinger equation in metamaterials and modulation instability. Eur. Phys. J. Plus 136(7), 1–22 (2021c)

    Google Scholar 

  • Abbagari, S., Houwe, A., Rezazadeh, H., Bekir, A., Bouetou, T.B., Crépin, K.T.: Optical soliton to multi-core (coupling with all the neighbors) directional couplers and modulation instability. Eur. Phys. J. Plus 136(3), 1–19 (2021d)

    Google Scholar 

  • Abbagari, S., Houwe, A., Saliou, Y., Douvagaï, Y.-M.C., Inc, M., Rezazadeh, H., Doka, S.Y.: Analytical survey of the predator–prey model with fractional derivative order. AIP Adv. 11(3), 035127 (2021e)

    ADS  Google Scholar 

  • Akbar, M.A., et al.: Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method. Res. Phys. 25, 104228 (2021)

    Google Scholar 

  • Akinyemi, L., Senol, M., Huseen, S.N.: Modified homotopy methods for generalized fractional perturbed Zakharov–Kuznetsov equation in dusty plasma. Adv. Differ. Equ. 2021(1), 1–27 (2021a)

    MathSciNet  Google Scholar 

  • Akinyemi, L., Senol, M., Iyiola, O.S.: Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method. Math. Comput. Simul. 182, 211–233 (2021b)

    MathSciNet  MATH  Google Scholar 

  • Akinyemi, L., Senol, M., Mirzazadeh, M., Eslami, M.: Optical solitons for weakly nonlocal Schrödinger equation with parabolic law nonlinearity and external potential. Optik 230, 166281 (2021c)

    ADS  Google Scholar 

  • Baker, A.N., Sept, D., Joseph, S., Holst, M.J., McCammon, J.A.: Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. 98(18), 10037–10041 (2001a)

    ADS  Google Scholar 

  • Baleanu, D., Kilic, B., Inc, M.: The first integral method for Wu–Zhang nonlinear system with time-dependent coefficients. Proc. Romanian Acad. Ser. A 16, 160–167 (2015)

    MathSciNet  Google Scholar 

  • Baskonus, H.M., Erdogan, F., Ozkul, A., Asmouh, I.: Novel behaviors to the nonlinear evolution equation describing the dynamics of ionic currents along microtubules. In: ITM Web of Conferences, vol. 13, no. 01015, pp. 1–5 (SCI-E) (2017). https://doi.org/10.1051/itmconf/20171301015

  • Choy, K.L., Su, B.: Growth behavior and microstructure of CdS thin films deposited by an electrostatic spray assisted vapor deposition (ESAVD) process. Thin Solid Films 388(1–2), 9–14 (2001)

    ADS  Google Scholar 

  • Drexler, K.E.: Nanosystems: Molecular Machinery, Manufacturing, and Computation. Wiley, New York (1992)

    Google Scholar 

  • Dustin, P.: Microtubules. Springer, New York (2012)

    Google Scholar 

  • Ghanbari, B.: Abundant exact solutions to a generalized nonlinear Schrödinger equation with local fractional derivative. Math. Methods Appl. Sci. (2021a) https://doi.org/10.1002/mma.7302

    Article  MATH  Google Scholar 

  • Ghanbari, B.: On novel nondifferentiable exact solutions to local fractional Gardner's equation using an effective technique. Math. Methods Appl. Sci. 44(6), 4673–4685 (2021b)

    MathSciNet  MATH  ADS  Google Scholar 

  • Ghanbari, B., Nisar, K.S., Aldhaifallah, M.: Abundant solitary wave solutions to an extended nonlinear Schrödinger's equation with conformable derivative using an efficient integration method. Adv. Differ. Equ. 2020(1), 1–25 (2020)

    Google Scholar 

  • Gittes, F., Mickey, B., Nettleton, J., Howard, J.: Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120(4), 923–934 (1993)

    Google Scholar 

  • Hamada, N., Sawada, S., Oshiyama, A.: New one-dimensional conductors: graphitic microtubules. Phys. Rev. Lett. 68(10), 1579 (1992)

    ADS  Google Scholar 

  • Hashemi, M.S., Inc, M., Bayram, M.: Symmetry properties and exact solutions of the time fractional Kolmogorov–Petrovskii–Piskunov equation. Rev. Mex. Fis. 65(5), 529–535 (2019)

    MathSciNet  Google Scholar 

  • Hosseini, K., Mirzazadeh, M., Ilie, M., Gomez-Aguilar, J.F.: Biswas–Arshed equation with the beta time derivative: optical solitons and other solutions. Optik 217, 164801 (2020a)

    ADS  Google Scholar 

  • Hosseini, K., Mirzazadeh, M., Rabiei, F., Baskonus, H.M., Yel, G.: Dark optical solitons to the Biswas–Arshed equation with high order dispersions and absence of self-phase modulation. Optik 209, 164576 (2020b)

    ADS  Google Scholar 

  • Hosseini, K., Osman, M.S., Mirzazadeh, M., Rabiei, F.: Investigation of different wave structures to the generalized third-order nonlinear Scrodinger equation. Optik 206, 164259 (2020c)

    ADS  Google Scholar 

  • Houwe, A., Abbagari, S., Almohsen, B., Betchewe, G., Inc, M., Doka, S.Y.: Chirped solitary waves of the perturbed Chen–Lee–Liu equation and modulation instability in optical monomode fibres. Opt. Quant. Electron. 53(6), 1–12 (2021a)

    Google Scholar 

  • Houwe, A., Yakada, S., Abbagari, S., Saliou, Y., Inc, M., Doka, S.Y.: Survey of third-and fourth-order dispersions including ellipticity angle in birefringent fibers on W-shaped soliton solutions and modulation instability analysis. Eur. Phys. J. Plus 136(4), 1–27 (2021b)

    Google Scholar 

  • Howard, J., Hudspeth, A.J., Vale, R.D.: Movement of microtubules by single kinesin molecules. Nature 342(6246), 154 (1989)

    ADS  Google Scholar 

  • Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    ADS  Google Scholar 

  • Inc, M.: Constructing solitary pattern solutions of the nonlinear dispersive Zakharov–Kuznetsov equation. Chaos Solitons Fractals 39, 109–119 (2009)

    MathSciNet  MATH  ADS  Google Scholar 

  • Inc, M.: Some special structures for the generalized nonlinear Schrödinger equation with nonlinear dispersion. Waves Random Complex Media 23(2), 77–88 (2013a)

    MathSciNet  ADS  Google Scholar 

  • Inc, M.: Compact and noncompact structures of a three-dimensional 3DKP(m, n) equation with nonlinear dispersion. Appl. Math. Lett. 26, 437–444 (2013b)

    MathSciNet  MATH  Google Scholar 

  • Inc, M., Kilic, B.: Soliton structures of some generalized nonlinear dispersion evolution systems. Proc. Romanian Acad. Ser. A 16, 430–436 (2015)

    MathSciNet  Google Scholar 

  • Inc, M., Miah, M., Akher Chowdhury, S.A., Rezazadeh, H., Akinlar, M.A., Chu, Y.-M.: New exact solutions for the Kaup–Kupershmidt equation. Aims Math. 5(6), 6726–6738 (2020a)

    MathSciNet  Google Scholar 

  • Inc, M., Rezazadeh, H., Vahidi, J., Eslami, M., Akinlar, M.A., Ali, M.N., Chu, Y.-M.: New solitary wave solutions for the conformable Klein–Gordon equation with quantic nonlinearity. Aims Math. 5(6), 6972–6984 (2020b)

    MathSciNet  Google Scholar 

  • Javeed, S., Alimgeer, K., Nawaz, S., Waheed, A., Suleman, M., Baleanu, D., Atif, M.: Soliton solutions of mathematical physics models using the exponential function technique. Symmetry 12(1), 176 (2020)

    Google Scholar 

  • Jordan, M.A., Wilson, L.: Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4(4), 253 (2004)

    Google Scholar 

  • José-Yacamán, M., Miki-Yoshida, M., Rendon, L., Santiesteban, J.G.: Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett. 62(6), 657–659 (1993)

    ADS  Google Scholar 

  • Khater, M.M.A., Lu, D., Zahran, E.H.Z.: Solitary wave solutions of the Benjamin–Bona–Mahoney–Burgers equation with dual power-law nonlinearity. Appl. Math. Inf. Sci 11(5), 1–5 (2017)

    MathSciNet  Google Scholar 

  • Khater, M.M.A., Seadawy, A.R., Lu, D.: Dispersive optical soliton solutions for higher-order nonlinear Sasa-Satsuma equation in mono mode fibers via new auxiliary equation method. Superlattices Microstruct. 113, 346–358 (2018)

    ADS  Google Scholar 

  • Kilic, B., Inc, M.: The first integral method for the time fractional Kaup–Boussinesq system with time dependent coefficient. Appl. Math. Comput. 254, 70–74 (2015)

    MathSciNet  MATH  Google Scholar 

  • Kirschner, M., Mitchison, T.: Beyond self-assembly: from microtubules to morphogenesis. Cell 45(3), 329–342 (1986)

    Google Scholar 

  • Korpinar, Z., Inc, M., Bayram, M., Hashemi, M.S.: New optical solitons for Biswas–Arshed equation with higher order dispersions and full nonlinearity. Optik 206, 163332 (2020)

    ADS  Google Scholar 

  • Kudryashov, N.A., Demina, M.V.: Polygons of differential equations for finding exact solutions. Chaos Solitons Fractals 33(5), 1480–1496 (2007)

    MathSciNet  MATH  ADS  Google Scholar 

  • Kudryashov, N.A., Loguinova, N.B.: Extended simplest equation method for nonlinear differential equations. Appl. Math. Comput. 205(1), 396–402 (2008)

    MathSciNet  MATH  Google Scholar 

  • Liu, J.G., Eslami, M., Rezazadeh, H., Mirzazadeh, M.: The dynamical behavior of mixed type lump solutions on the (3+ 1)-dimensional generalized Kadomtsev–Petviashvili–Boussinesq equation. Int. J. Nonlinear Sci. Numer. Simul. 21(7–8), 661–665 (2020)

    MathSciNet  Google Scholar 

  • Lu, D., Seadawy, A.R., Arshad, M.: Applications of extended simple equation method on unstable nonlinear Schrödinger equations. Optik 140, 136–144 (2017a)

    ADS  Google Scholar 

  • Lu, D., Seadawy, A.R., Khater, M.M.A.: Bifurcations of new multi-soliton solutions of the van der Waals normal form for fluidized granular matter via six different methods. Res. Phys. 7, 2028–2035 (2017b)

    Google Scholar 

  • Mata, A., Fleischman, A.J., Roy, S.: Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevice 7(4), 281–293 (2005)

    Google Scholar 

  • Mitchison, T., Kirschner, M.: Dynamic instability of microtubule growth. Nature 312(5991), 237 (1984a)

    ADS  Google Scholar 

  • Mitchison, T., Kirschner, M.: Microtubule assembly nucleated by isolated centrosomes. Nature 312(5991), 232 (1984b)

    ADS  Google Scholar 

  • Nestor, S., Betchewe, G., Rezazadeh, H., Bekir, A., Doka, S.Y.: Exact optical solitons to the perturbed nonlinear Schrödinger equation with dual-power law of nonlinearity. Opt. Quant. Electron. 52(318), 1–16 (2020)

    Google Scholar 

  • Paredez, A.R., Christopher, R.S., Ehrhardt, D.W.: Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312(5779), 1491–1495 (2006)

    ADS  Google Scholar 

  • Pinar, Z., Rezazadeh, H., Eslami, M.: Generalized logistic equation method for Kerr law and dual power law Schrödinger equations. Opt. Quant. Electron. 52(504), 1–16 (2020)

    Google Scholar 

  • Rezazadeh, H., Korkmaz, A., Eslami, M., Mirhosseini-Alizamini, S.M.: A large family of optical solutions to Kundu–Eckhaus model by a new auxiliary equation method. Opt. Quant. Electron. 51(84), 1–12 (2019)

    Google Scholar 

  • Rezazadeh, H., Younis, M., Eslami, M., Bilal, M., Younas, U.: New exact traveling wave solutions to the (2+ 1)-dimensional Chiral nonlinear Schrödinger equation. Math. Model. Nat. Phenom. 16, 38 (2021)

    MATH  Google Scholar 

  • Satarić, M.V., Sekulić, D., Zivanov, M.: Solitonic ionic currents along microtubules. J. Comput. Theor. Nanosci. 7(11), 2281–2290 (2010)

    Google Scholar 

  • Schiff, P.B., Horwitz, S.B.: Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. 77(3), 1561–1565 (1980)

    ADS  Google Scholar 

  • Seadawy, A.R., Lu, D., Khater, M.M.A.: Bifurcations of solitary wave solutions for the three-dimensional Zakharov–Kuznetsov–Burgers equation and Boussinesq equation with dual dispersion. Optik 143, 104–114 (2017)

    ADS  Google Scholar 

  • Senol, M., Akinyemi, L., Ata, A., Iyiola, O.S.: Approximate and generalized solutions of conformable type Coudrey-Dodd-Gibbon-Sawada-Kotera equation. Int. J. Mod. Phys. B 35(02), 2150021 (2021)

    MathSciNet  MATH  ADS  Google Scholar 

  • Srivastava, H.M., Günerhan, H., Ghanbari, B.: Exact traveling wave solutions for resonance nonlinear Schrödinger equation with intermodal dispersions and the Kerr law nonlinearity. Math. Methods Appl. Sci. 42(18), 7210–7221 (2019)

    MathSciNet  MATH  Google Scholar 

  • Weisenberg, R.C., Broisy, G.G., Taylor, E.W.: Colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry 7(12), 4466–4479 (1968)

    Google Scholar 

  • Yahya, K.H., Moussa, Z.A.: New approach of generalized exp \(( ( - \phi (\xi ))\) expansion method and its application to some nonlinear partial differential equations. J. Math. Res. 7(3), 106 (2015)

    Google Scholar 

  • Zahran, E.H.M.: Exact traveling wave solutions of nano-ionic solitons and nano-ionic current of MTs using the exp \(( ( - \phi (\xi ))\)-expansion method. Adv. Nanopart. 4(2), 25 (2015)

    Google Scholar 

  • Zhong, Z., Wang, D., Cui, Y., Bockrath, M.W., Lieber, C.M.: Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302(5649), 1377–1379 (2003)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Inc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khater, M.M.A., Jhangeer, A., Rezazadeh, H. et al. New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques. Opt Quant Electron 53, 609 (2021). https://doi.org/10.1007/s11082-021-03267-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03267-2

Keywords

Navigation