Skip to main content
Log in

Propagation of vortex cosine-hyperbolic-Gaussian beams in atmospheric turbulence

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the propagation properties of a vortex cosh-Gaussian beam (vChGB) in turbulent atmosphere are investigated. Based on the extended Huygens–Fresnel diffraction integral and the Rytov method, the analytical expression for the average intensity of the vChGB propagating in the atmospheric turbulence is derived. The effects of the turbulent strength and the beam parameters on the intensity distribution and the beam spreading are illustrated numerically and analyzed in detail. It is shown that upon propagating, the incident vChGB keeps its initial hollow dark profile within a certain propagation distance, then the field loses gradually its central hole-intensity and transformed into a Gaussian-like beam for large propagation distance. The rising speed of the central peak is demonstrated to be faster when the constant strength turbulence or the wavelength are larger and the Gaussian width is smaller. The obtained results can be beneficial for applications in optical communications and remote sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. National Bureau of Standards, Washington, DC (1964)

    MATH  Google Scholar 

  • Allen, L., Begersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular omentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)

    Article  ADS  Google Scholar 

  • Andrews, L.C., Philips, R.L.: Laser Beam Propagation Through Random Media. SPIE Press, Washington (1998)

    Google Scholar 

  • Baykal, Y.: Correlation and structure functions of Hermite-sinusoidal-Gaussian beams in the turbulent atmosphere. J. Opt. Am. A Opt. Image Sci. vis. 21, 1290–1299 (2004)

    Article  ADS  Google Scholar 

  • Belafhal, A., Ibnchaikh, M.: Propagation properties of Hermite–cosh-Gaussian laser. Opt. Commun. 186, 269–276 (2000)

    Article  ADS  Google Scholar 

  • Belafhal, A., Hricha, Z., Dalil-Essakali, L., Usman, T.: A note on some integrals involving Hermite polynomials and their applications. Adv. Math. Mod. Aappl. 5(3), 313–319 (2020)

    Google Scholar 

  • Bishop, A.I., Nieminen, T.A., Heckenberg, N.R., Rubinsztein, H.: Optical microrhology using rotating laser-trapped particles. Phys. Rev. Lett. 92(19), 198104–198107 (2004)

    Article  ADS  Google Scholar 

  • Born, M., Wolf, E.: Principles of optics. In: Seventh (expanded) (ed) Cambridge University Press, Cambridge (1999)

  • Boufalah, F., Dalil-Essakali, L., Ez-zariy, L., Belafhal, A.: Introduction of generalized Bessel–Laguerre–Gaussian beams and its central intensity traveling a turbulent atmosphere. Opt. Quant. Electron. 50, 305–325 (2018)

    Article  Google Scholar 

  • Cai, Y.: Propagation of various flat-topped beams in a turbulent atmosphere. J. Opt. a. Pure Appl. Opt. 8, 537–545 (2006)

    Article  ADS  Google Scholar 

  • Cai, Y., He, S.: Propagation of various dark hollow beams in a turbulent atmosphere. Opt. Express 14, 1353–1367 (2006)

    Article  ADS  Google Scholar 

  • Cai, Y., Lu, X., Lin, Q.: Hollow Gaussian beam and its propagation. Opt. Lett. 28, 1084–1086 (2003)

    Article  ADS  Google Scholar 

  • Cang, J., Zhang, Y.: Axial intensity distribution of truncated Bessel-Gauss beams in a turbulent atmosphere. Optik 121, 239–245 (2010)

    Article  ADS  Google Scholar 

  • Casperson, L.W., Tovar, A.A.: Hermite–Sinusoidal–Gaussian beams in complex optical systems. J. Opt. Am. A 15, 954–961 (1998)

    Article  ADS  Google Scholar 

  • Chu, X., Ni, Y., Zhou, G.: Propagation of cosh-Gaussian beams diffracted by a circular aperture in turbulent atmosphere. Appl. Phys. B 87, 547–552 (2007)

    Article  ADS  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Product, 5th edn. Academic Press, New York (1994)

    MATH  Google Scholar 

  • Hricha, Z., Belafhal, A.: Focusing properties of focal shift in hyperbolic-cosine-Gaussian beams. Opt. Commun. 253, 242–249 (2005)

    Article  ADS  Google Scholar 

  • Hricha, Z., Yaalou, M., Belafhal, A.: Intensity characteristics of double–half inverse Gaussian hollow beams through turbulent atmosphere. Opt. Quant. Electron. 52, 201–207 (2020a)

    Article  Google Scholar 

  • Hricha, Z., Yaalou, M., Belafhal, A.: Introduction of a new vortex cosine-hyperbolic-Gaussian beam and the study of its propagation properties in Fractional Fourier Transform optical system. Opt. Quant. Electron. 52, 296–302 (2020b)

    Article  Google Scholar 

  • Hricha, Z., Yaalou, M., Belafhal, A.: Propagation properties of vortex cosine-hyperbolic-Gaussian beams in strongly nonlocal nonlinear media. JQSRT 265(6), 10755A–10774A (2021)

    Google Scholar 

  • Khannous, F., Boustimi, M., Nebdi, H., Belafhal, A.: Theoretical investigation on the Hollow Gaussian beams propagating in atmospheric turbulent. Chin. J. Phys. 54, 194–220 (2016)

    Article  MathSciNet  Google Scholar 

  • Kuga, T., Torii, Y., Shiokawa, N., Hirano, T., Shimizu, Y., Sasada, H.: Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett. 78, 4713–4716 (1997)

    Article  ADS  Google Scholar 

  • Lu, B., Zhang, B.: propagation properties of cosh-Gaussian beams. Opt. Commun. 164(4–5), 165–170 (1999)

    Article  ADS  Google Scholar 

  • Lukin, V.P., Konyaev, P.A., Sennikov, V.A.: Beam spreading of vortex beams propagating in turbulent atmosphere. Appl. Opt. 51(10), 84–87 (2012)

    Article  Google Scholar 

  • Mei, Q.X., Yue, Z.W., Zhong, R.R.: Intensity distribution properties of Gaussian vortex beam propagation in atmospheric turbulence. Cin. Phys. B 24(4), 044201–044205 (2015)

    ADS  Google Scholar 

  • Noriega-Manez, R.J., Gutiérrez-Vega, J.C.: Rytov theory for Helmholtz–Gauss beams in turbulent atmosphere. Opt. Express 15, 16328–16341 (2007)

    Article  ADS  Google Scholar 

  • Paterson, L., MacDonald, M.P., Arlt, J., Sibbett, W., Bryant, P.E., Dholakia, K.: Controlled rotation of optically trapped microscopic particles. Sci. 292(5518), 912–914 (2001)

    Article  ADS  Google Scholar 

  • Ponomarenko, S.A.: A class of partially coherent beams carrying optical vortices. J. Opt. Am. A 18, 150–156 (2001)

    Article  ADS  Google Scholar 

  • Rubinsztein-Dunlop, H., et al.: Roadmap on structured light. J. Opt. 19(1), 013001-1–101300 (2017)

    Article  ADS  Google Scholar 

  • Saad, F., El. Halba, E.M., Belafhal, A.: A theoretical study of the on-axis average intensity of generalized spiraling Bessel beams in a turbulent atmosphere. Opt. Quant. Electron. 49, 94–106 (2018)

    Article  Google Scholar 

  • Tovar, A.A., Casperson, L.W.: Production and propagation of Hermite-sinusoidal-Gaussian laser beams. J. Opt. Am. A 15, 2425–2432 (1998)

    Article  ADS  Google Scholar 

  • Wang, Z., Lin, Q., Wang, Y.: Control of atomic rotation by elliptical hollow beam carrying zero angular momentum. Opt. Commun. 240, 357–362 (2004)

    Article  ADS  Google Scholar 

  • Wang, F., Cai, Y., Eyyboglu, H.T., Baykal, Y.: Average Intensity and spreading of partially coherent standard and elegant Laguerre–Gaussian beams in turbulent atmosphere. Prog. Electromag. Res. PIER 103, 33–56 (2010)

    Article  Google Scholar 

  • Wang J, Yang JY, Fazal IM, Ahmed N, Yan Y, Huang H, Ren YY, Dolinar, YS, Tur M, Willner AE (2012) Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Phot. l6(7): 488–412.

  • Wang, F., Liu, X., Cai, Y.: Propagation of partially coherent beam in turbulent atmosphere: a review. Prog. Electromag. Res. 150, 123–143 (2015)

    Article  Google Scholar 

  • Yaalou, M., El. Halba, E.M., Hricha, Z., Belafhal, A.: Propagation characteristics of Dark and Antidark Gaussian beams in a turbulent atmosphere. Opt. Quant. Electr. 51, 255–266 (2019)

    Article  Google Scholar 

  • Zhou, G.Q., Cai, Y., Dai, C.Q.: Hollow vortex Gaussian beams. Sci. Chin. 56(5), 896–903 (2013)

    Google Scholar 

  • Zhu, X., Wu, G., Lu, B.: Propagation of elegant vortex Hermite–Gaussian beams in turbulent atmosphere. In: Proceedings of the SPIE 10158, Optical Communication, Optical Fiber Sensors, and Optical Memories for Big Data Storage, p. 101580F-6 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Belafhal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hricha, Z., Lazrek, M., Yaalou, M. et al. Propagation of vortex cosine-hyperbolic-Gaussian beams in atmospheric turbulence. Opt Quant Electron 53, 383 (2021). https://doi.org/10.1007/s11082-021-03019-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03019-2

Keywords

Navigation