Skip to main content
Log in

A theoretical proposal of high performance blood components biosensor based on defective 1D photonic crystal employing WS2, MoS2 and graphene

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this research, a novel configuration of 1D photonic crystal (PhC) is proposed for the detection of numerous elements present in human blood such as plasma, RBC, biotin, serum albumin. The proposed structure is envisaged with an alternate arrangement of CaF2, PtSe2 and ZnSe with a central defect layer, where the wall of the defect layer is separately coated with novel 2D materials like WS2, MoS2 and graphene to enhance the sensor performance. The well-known transfer matrix method (TMM) is employed to compute the transmission spectrum and absorption spectrum by infiltrating the defect layer with blood components. The cornerstone of this work is to observe the shift in the defect mode wavelength in the transmission spectrum. The geometrical parameters of the structure such as thickness of dielectric layers, defect layer, refractive index of dielectric layers and the number of period are judiciously optimized to realize effective sensor. The effect of variation in the defect layer thickness and angle of incidence on the transmission spectrum is thoroughly studied. Additionally, the number of layers of WS2, MoS2 and graphene are suitably optimized for design of high performance biosensor. Various sensing characteristics such as sensitivity, signal-to-noise ratio (SNR), quality factor (QF), figure of merit (FOM), resolution and detection limit (DL) are evaluated and compared for the proposed WS2, MoS2 and graphene based sensor configurations. Moreover, the simple structure, cost-effective fabrication methods and label-free detection of blood components make the proposed sensor a promising challenger for biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  • Abd El-Aziz, O.A., Elsayed, H.A., Sayed, M.I.: One-dimensional defective photonic crystals for the sensing and detection of protein. Appl Opt. 58(30), 8309–8315 (2019a)

    Article  ADS  Google Scholar 

  • Abd El-Aziz, O.A., Elsayed, H.A., Sayed, M.I.: One-dimensional defective photonic crystals for the sensing and detection of protein. Appl. Opt. 58(30), 8309–8315 (2019b)

    Article  ADS  Google Scholar 

  • Ahmed, A.M., Mehaney, A.: Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci. Rep. 9, 6973 (2019). https://doi.org/10.1038/s41598-019-43440-y

    Article  ADS  Google Scholar 

  • Aly, A.H., Sayed, F.A.: THz cutoff frequency and multifunction Ti2Ba2Ca2Cu3O10/GaAs photonic bandgap materials. Int. J. Mod. Phys. B 34(10), 2050091 (2020). https://doi.org/10.1142/S0217979220500915

    Article  ADS  Google Scholar 

  • Aly, A.H., et al.: Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal. RSC Adv. 10, 31765–31772 (2020a)

    Article  ADS  Google Scholar 

  • Aly, H.A., et al.: Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor. Phys. Scr. 95, 035510 (2020b). https://doi.org/10.1088/1402-4896/ab53f5

    Article  Google Scholar 

  • Arunkumar, R., Suaganya, T., Robinson, S.: Design and analysis of 2D photonic crystal based biosensor to detect different blood components. Photonic Sens. 9, 69–77 (2019)

    Article  ADS  Google Scholar 

  • Boedecker, G., Henkel, C.: All-frequency effective medium theory of a photonic crystal. Opt. Express 11, 1590–1595 (2003). https://doi.org/10.1364/OE.11.001590

    Article  ADS  Google Scholar 

  • Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)

    Article  ADS  Google Scholar 

  • Bouzidi, A., Bria, D., Falyouni, F., Akjouj, A., Lévêque, G., Azizi, M., Berkhli, H.: A biosensor based on one-dimensional photonic crystal for monitoring blood glycemia. J. Mater. Environ. Sci. 8(11), 3892–3896 (2017)

    Google Scholar 

  • Boyd, R.W., Heebner, J.E.: Sensitive disk resonator photonic biosensor. Appl. Opt. 18(31), 15742–15747 (2001)

    Google Scholar 

  • Chen, H.L., Lee, H.F., Chao, W.C., Hsieh, C.I., Ko, F.H.: Fabrication of autocloned photonic crystals by using high-density-plasma chemical vapor deposition. Vac. Sci. Technol. B 22, 3359 (2008)

    Article  Google Scholar 

  • Devashish, D., Ojambati, O.S., Hasan, S.B., van der Vegt, J.J.W., Vos, W.L.: Three-dimensional photonic band gap cavity with finite support: enhanced energy density and optical absorption. Phys. Rev. B 99, 075112 (2019). https://doi.org/10.1103/PhysRevB.99.075112

    Article  ADS  Google Scholar 

  • Elsayed, H.A.: A multi-channel optical filter by means of one dimensional n doped semiconductor dielectric photonic crystals. Mater. Chem. Phys. 216, 191–196 (2018)

    Article  Google Scholar 

  • Entezar, S.R., Saleki, Z., Madani, A.: Optical properties of a defective one-dimensional photonic crystal containing graphene nano layers. Phys. B 478, 122–126 (2015)

    Article  ADS  Google Scholar 

  • Falkovsky, L.A., Pershoguba, S.S.: Optical far-infrared properties of a graphene mono layer and multilayer. Phys. Rev. B 76(15), 153410 (2007). https://doi.org/10.1103/PhysRevB.76.153410

    Article  ADS  Google Scholar 

  • Gan, S., et al.: Ultra-sensitive refractive index sensors based on Bloch surface waves with transition metal dichalcogenides. IEEE Sens. J. 19(19), 8675–8680 (2019)

    Article  ADS  Google Scholar 

  • Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  ADS  Google Scholar 

  • Ghasemi, F., Entezar, S.R., Razi, S.: Terahertz tunable photonic crystal optical filter containing graphene and nonlinear electro-optic polymer. Laser Phys. 29, 056201 (2019). https://doi.org/10.1088/1555-6611/ab05c2

    Article  ADS  Google Scholar 

  • Guo, Y., et al.: Two-dimensional PtSe2 theoretically enhanced Goos–Hänchen shift sensitive plasmonic biosensors. Plasmonics 15, 1815–1826 (2020)

    Article  Google Scholar 

  • Han, L., et al.: Comprehensive study of SPR biosensor performance based on metal-ITO-graphene/TMDC hybrid multilayer. Plasmonics 14, 2021–2030 (2019)

    Article  Google Scholar 

  • Hattori, T.: Third-order nonlinearity enhancement in one-dimensional photonic crystal structures. Jpn. J. Appl. Phys. 41, 1349–1353 (2002)

    Article  ADS  Google Scholar 

  • Hemmatyar, O., Rahmani, B., Bagheri, A., Khavasi, A.: Phase resonance tuning and multi-band absorption via graphene-covered compound metallic gratings. IEEE J. Quantum Electron. 53, 1–10 (2017)

    Article  Google Scholar 

  • https://refractiveindex.info/?shelf=main&book=CaF2&page=Malitson.

  • https://refractiveindex.info/?shelf=main&book=ZnSe&page=Marple.

  • Ilinykh, V.A., Matyushkin, L.B.: Sol-gel fabrication of one-dimensional photonic crystals with predicted transmission spectra. J. Phys. Conf. Ser. 741, 012008 (2016). https://doi.org/10.1088/1742-6596/741/1/012008

    Article  Google Scholar 

  • Jahania, D., Raissi, B., Taati, F., Riahifar, R., Yaghmaee, M.S.: Optical properties of fluidic defect states in one-dimensional graphene-based photonic crystal biosensors: visible and infrared Hall regime sensing. Eur. Phys. J. plus. 135, 160 (2020). https://doi.org/10.1140/epjp/s13360-019-00056-5

    Article  Google Scholar 

  • Janisch, C., et al.: Extraordinary second harmonic generation in tungsten disulfide monolayers. Sci. Rep. 4(1), 5530 (2015). https://doi.org/10.1038/srep05530

    Article  Google Scholar 

  • Jia, Y., Li, Z., Wang, H., Saeed, M., Cai, H.: Sensitivity enhancement of a surface plasmon resonance sensor with platinum diselenide. Sensors 20(1), 131 (2020)

    Article  ADS  Google Scholar 

  • John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  ADS  Google Scholar 

  • Keshavarz, A., Zangenehzadeh, S., Hatef, A.: Optimization of surface plasmon resonance-based biosensors for monitoring hemoglobin levels in human blood. Appl. Nanosci. 10, 1465–1474 (2020)

    Article  ADS  Google Scholar 

  • Kravets, V.G., et al.: Ellipsometry and optical spectroscopy of low-dimensional family TMDs. Semicond. Phys. Quantum Electron. Optoelectron. 20(3), 284–296 (2017)

    Article  Google Scholar 

  • Kukkar, M., Sharma, A., Kumar, P., Kim, K.H., Deep, A.: Application of MoS2 modified screen printed electrodes for highly sensitive detection of bovineserum albumin. Anal. Chim. Acta 939, 101–107 (2016)

    Article  Google Scholar 

  • Lin, C., Chen, S.: Design of high-performance Au-Ag-dielectric graphene based surface plasmon resonance biosensors using genetic algorithm. J. Appl. Phys. 125, 113101 (2019). https://doi.org/10.1063/1.5066354

    Article  ADS  Google Scholar 

  • Liu, X., et al.: Enhanced X-ray photon response in solution-synthesized CsPbBr3 nanoparticles wrapped by reduced graphene oxide. Sol. Energy Mater. Sol. Cells 187, 249–254 (2018)

    Article  Google Scholar 

  • Mittal, V., et al.: Optical quality ZnSe films and low loss waveguides on Si substrates for mid-infrared applications. Opt. Mater. Express 7(3), 712–725 (2017)

    Article  ADS  Google Scholar 

  • Mohammed, N.A., et al.: High-sensitivity ultra-quality factor and remarkable compact blood components biomedical sensor based on nanocavity coupled photonic crystal. Results Phys. 14, 102478 (2019). https://doi.org/10.1016/j.rinp.2019.102478

    Article  Google Scholar 

  • Nouman, W.M., Abd El-Ghany, S.E., Sallam, S.M., Dawood, A.F., Aly, A.H.: Biophotonic sensor for rapid detection of brain lesions using 1D photonic crystal. Opt. Quant. Electron. 52, 287 (2020). https://doi.org/10.1007/s11082-020-02409-2

    Article  Google Scholar 

  • Panda, A., Devi, P.P.: Photonic crystal biosensor for refractive index based cancerous cell detection. Opt. Fiber Technol. 54, 102123 (2020). https://doi.org/10.1016/j.yofte.2019.102123

    Article  Google Scholar 

  • Panda, A., Pukhrambam, P.D.: Investigation of defect based 1D photonic crystal structure for real-time detection of waterborne bacteria. Phys. B 607(3), 412854 (2021). https://doi.org/10.1016/j.physb.2021.412854

    Article  Google Scholar 

  • Panda, A., Sarkar, P., Palai, G.: Research on SAD-PRD losses in semiconductor waveguide for application in photonic integrated circuits. Optik 154, 748–754 (2018)

    Article  ADS  Google Scholar 

  • Panda, A., Pukhrambam, P.D., Keiser, G.: Realization of sucrose sensor using 1D photonic crystal structure vis-à-vis band gap analysis. Microsyst. Technol. 27, 833–842 (2021)

    Article  Google Scholar 

  • Qi, H., Wang, L., Sun, J., Long, Y., Hu, P., Liu, F., He, X.: Production methods of vander waals hetero structures based on transition metal dichalcogenides. Curr. Comput.-Aided Drug Des. 8(1), 35 (2018). https://doi.org/10.3390/cryst8010035

    Article  Google Scholar 

  • Schürmann, U., Takele, H., Zaporojtchenko, V., Faupel, F.: Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering. Thin Solid Films 515, 801–804 (2006)

    Article  ADS  Google Scholar 

  • Shaban, S.M., Mehaney, A., Aly, A.H.: Determination of 1-propanol, ethanol and methanol concentrations in water based on 1D phoxonic crystal sensor. Appl. Opt. 59(13), 3878–3885 (2020)

    Article  ADS  Google Scholar 

  • Sharma, P., et al.: Design and simulation of photonic crystal based biosensor for detection of different blood components. In: 2014 IEEE Region 10 Symposium, Kuala Lumpur, pp. 171–176 (2014). https://doi.org/10.1109/TENCONSpring.2014.6863019

  • Shi, B., Jiang, Z.M., Wang, X.: Defective photonic crystals with greatly enhanced second-harmonic generation. Opt. Lett. 26, 1194–1196 (2001)

    Article  ADS  Google Scholar 

  • Wang, H., Yan, K.P., Xie, J., Duan, M.: Fabrication of ZnO colloidal photonic crystal by spin-coating method. Mater. Sci. Semicond. Process. 11(2), 44–47 (2008)

    Article  Google Scholar 

  • Wang, Y., et al.: Monolayer PtSe2, a new semiconducting transition-metal dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 15, 4013–4018 (2015)

    Article  ADS  Google Scholar 

  • Wei, J., et al.: Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites. Opt. Lett. 42(5), 911–914 (2017)

    Article  ADS  Google Scholar 

  • White, I.M., Fan, X.: On the performance quantification of resonant refractive index sensors. Opt. Express 16(2), 1020–1028 (2008)

    Article  ADS  Google Scholar 

  • Wolf, D.J., Zitelli, J.A.: Surgical margins for basal cell carcinoma. Arch. Dermatol. 123(3), 340344 (1987). https://doi.org/10.7759/cureus.9211

    Article  Google Scholar 

  • Yablanovitch, E.: Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  • Yuan, L., Huang, L.: Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale 7, 7402–7408 (2015)

    Article  ADS  Google Scholar 

  • Zahid, M.A., et al.: Optical properties of CaF2 thin film deposited on borosilicate glass and its electrical performance in PV module applications. Appl. Sci. 10, 5647 (2020). https://doi.org/10.3390/app10165647

    Article  Google Scholar 

  • Zang, Z., et al.: Tunable photoluminescence of water-soluble AgInZnS–graphene oxide (GO) nanocomposites and their application in-vivo bioimaging. Sens. Actuators B Chem. 252, 1179–1186 (2017)

    Article  Google Scholar 

  • Zeng, C., Luo, C., Hao, L., Xie, Y.: The research on magnetic tunable characteristics of photonic crystal defect localized modes with a defect layer of nanoparticle. Chin. Opt. Lett. 12, 11602 (2014). https://doi.org/10.3788/COL201412.S11602

    Article  ADS  Google Scholar 

  • Zhu, B., Chen, X., Cui, X.: Exciton binding energy of monolayer WS2. Sci. Rep. 5, 9218 (2015). https://doi.org/10.1038/srep09218

    Article  ADS  Google Scholar 

Download references

Funding

There is no funding granted for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AP: Conceptualization, Methodology, Software, Data collection, Visualization, Investigation, Writing—Original draft preparation. PDP: Supervision, Writing—Reviewing and Editing.

Corresponding author

Correspondence to Abinash Panda.

Ethics declarations

Conflicts of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, A., Pukhrambam, P.D. A theoretical proposal of high performance blood components biosensor based on defective 1D photonic crystal employing WS2, MoS2 and graphene. Opt Quant Electron 53, 357 (2021). https://doi.org/10.1007/s11082-021-03012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03012-9

Keywords

Navigation