Skip to main content
Log in

Second harmonic generation of cosh-Gaussian laser beam in magnetized plasma

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the present paper, second harmonic generation (SHG) of cosh-Gaussian laser in a magnetized plasma is analyzed. During laser propagation through plasma, electrons acquire the oscillatory velocity and result density perturbation. The density oscillations beat with the oscillatory velocity to produce second harmonic current which drives SHG. Wiggler magnetic field adds the additional momentum to the photons of second harmonic and fulfills the phase matching condition which results in resonant SHG. Wiggler magnetic field also helps to maintain the cyclotron frequency due to which plasma electrons remain confined within the plasma region and results SHG of higher efficiency. Using paraxial approximation, we have derived the equation for the amplitude of SHG and studied its variation for different values of intensity parameter of incident laser, wiggler magnetic field, decentered parameter and plasma density. The efficiency of SHG is significant at higher values of intensity of incident laser, wiggler field, and plasma density as observed in our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Askari, H.R., Mozafari, A.: Effect of inertial ponderomotive force and self-focusing of the fundamental pulse on generation of second harmonic in magnetic plasma. Optik 58, 1450 (2018)

    ADS  Google Scholar 

  • Askari, H.R., Noroozi, M.: Effect of a wiggler magnetic field and the ponderomotive force on the second harmonic generation in laser-plasma interaction. Turk. J. Phys. 33, 299 (2009)

    Google Scholar 

  • Blanc, D., Cachard, A., Pommeir, J.C.: All optical probing of material structure by second-harmonic generation: application to piezoelectric aluminium nitride thin films. Opt. Eng. 36, 1191 (1997)

    ADS  Google Scholar 

  • Brixius, K., Beyer, A., Güdde, J., Dürr, M., Stolz, W., Volz, K., Höfer, U.: Second-harmonic generation as probe for structural and electronic properties of buried GaP/Si(001) interfaces. J. Phys.: Condens. Matter 112357, 1 (2018)

    Google Scholar 

  • Campognola, P.: Second harmonic generation imaging microscopy: applications to diseases diagnostics. Anal. Chem. 9, 3224 (2011)

    Google Scholar 

  • Chen, X., Nadiarynkh, O., Plotnikov, S., Campagnola, P.J.: Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc. 4, 654 (2012)

    Google Scholar 

  • Cicchi, R., Pavone, F.S.: Probing collagen organization: practical guide for second-harmonic generation (SHG) imaging, methods. Mol. Biol. 1627, 409 (2017)

    Google Scholar 

  • Gan, X.T., Zhao, C.Y., Hu, S.Q., Wang, T., Song, Y., Li, J., Zhao, Q.H., Jie, W.Q., Zhao, J.-L.: Microwatts continuous-wave pumped second harmonic generation in few and mono-layer GaSe. Light Sci Appl. 7, 17126 (2018)

    Google Scholar 

  • Jha, P., Mishra, R.K., Raj, G., Upadhyay, A.K.: Second harmonic generation in laser magnetized–plasma interaction. Phys. Plasmas 14, 053107 (2007)

    ADS  Google Scholar 

  • Kant, N., Gupta, D.N., Suk, H.: Generation of second harmonic radiations of a self-focusing laser from plasma with density transition. Phys. Lett. A 375, 3134 (2011)

    ADS  Google Scholar 

  • Lee, S.L., Chen, Y.F., Dong, C.Y.: probing multiscale collagenous tissue by nonlinear microscopy. Biomater. Sci. Eng. 11, 2825 (2016)

    Google Scholar 

  • Marrucci, L., Paparo, D., Cerrone, G., Solimeno, S.: Optical analysis of surfaces by second-harmonic generation: possible applications to tribology. Trobotest J. 8, 329 (2002)

    Google Scholar 

  • Nahata, A., Heinz, T.F.: High-speed electrical sampling using optical second-harmonic generation. Appl. Phys. Lett. 69, 746 (1996)

    ADS  Google Scholar 

  • Nanda, V., Kant, N., Wani, M.A.: Sensitiveness of decentered parameter for relativistic self-focusing of hermite-cosh-Gaussian laser beam in plasma. IEEE Trans. Plasmsa Sci. 41, 8 (2013)

    Google Scholar 

  • Natal, R.A., Vassallo, J., Paiva, G.R., Pelegati, V.B., Barbosa, G.O., Mendonça, G.R., Bondarik, C., Derchain, S.F., Carvalho, H.F., Lima, C.S., Cesar, C.L., Sarian, L.O.: Collagen analysis by second-harmonic generation microscopy predicts outcome of luminal breast cancer. Tumour Biol. 4, 40 (2018)

    Google Scholar 

  • Nucciotti, V., Stringari, C., Sacconi, L., Vanzi, F., Fusi, L., Linari, M., Piazzesi, G., Lombardi, V., Pavone, F.S.: Probing myosin structural conformation in vivo by second-harmonic generation microscopy. Proc. Natl. Acad. Sci. 107, 7763 (2010)

    ADS  Google Scholar 

  • Purohit, G., Rawat, P., Gauniyal, R.: Second harmonic generation by self-focusing of intense hollow Gaussian laser beam in collisionless plasma. Phys. Plasmas 23, 013103 (2016)

    ADS  Google Scholar 

  • Rawat, P., Purohit, G.: Self-focusing of a cosh-Gaussian laser beam in magnetized plasma under relativistic-ponderomotive regime. Plasma Phys. 59, 1 (2018)

    Google Scholar 

  • Salih, H.A., Tripathi, V.K., Pandey, B.K.: Second-harmonic generation of a Gaussian laser beam in a self-created magnetized plasma channel. IEEE Trans. Plasmsa Sci. 31, 314 (2013)

    Google Scholar 

  • Simon, F., Mahieux, J., Clevers, S., Couvrat, N., Dupray, V., Coquerel, G.: Second harmonic generation: applications in phase diagram investigations. Matec Conf. 3, 01011 (2013)

    Google Scholar 

  • Singh, A., Gupta, N.: Second harmonic generation by relativistic self-focusing of cosh-Gaussian laser beam in underdense plasma. Laser Part. Beams 34, 1 (2015)

    ADS  Google Scholar 

  • Singh, K.P., Gupta, V.L., Tripathi, V.K.: Relativistic laser harmonic generation from plasmas with density ripple. Opt. Commun. 226, 377 (2003)

    ADS  Google Scholar 

  • Singh, N., Gupta, N., Singh, A.: second harmonic generation of cosh-Gaussian laser beam in collisional plasma with non-linear absorption. Opt. Commun. 381, 180 (2016)

    ADS  Google Scholar 

  • Tilbury, K., Campagnola, P.J.: Applications of second-harmonic generation imaging microscopy in ovarian and breast cancer. Perspect. Med. Chem. 7, 7 (2015)

    Google Scholar 

  • Tran, R.J., Sly, K.L., Conboy, J.C.: Applications of surface second harmonic generations in biological sensing. Annu. Rev. Anal. Chem. 10, 387 (2017)

    Google Scholar 

  • Varaki, M.A., Jafari, S.: Second-harmonic generation of a linearly polarized laser pulse propagating through magnetized plasma in the presence of a planar magneto-static wiggler. Eur. Phys. J. Plus 11975, 133 (2018)

    Google Scholar 

  • Wadhwa, J., Singh, A.: Generation of second harmonics by a self-focused Hermite-Gaussian laser beam in collisionless plasma. Phys. Plasmas 26, 062118 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the TARE Scheme (Grant No. TAR/2018/000916) of SERB, DST, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niti Kant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Thakur, V. & Kant, N. Second harmonic generation of cosh-Gaussian laser beam in magnetized plasma. Opt Quant Electron 52, 444 (2020). https://doi.org/10.1007/s11082-020-02559-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02559-3

Keywords

Navigation