Skip to main content
Log in

Strong absorption near exceptional points in plasmonic waveguide arrays

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We investigate the exceptional points (EPs) in plasmonic waveguide arrays, including metallic waveguide arrays (MWAs) and graphene sheet arrays (GSAs). The EPs emerge at the boundary of strong and weak coupling ranges in both systems. The cross conversion of Bloch modes and variation of geometric phase can be observed by encircling an EP in the parametric space. We also show the Bloch modes exhibit strong absorption in the vicinity of EPs in GSAs, which originates from the enhanced longitude electric field along the propagation direction. The abnormal absorption and field enhancement also arise in ultrathin MWAs and disappear when the thickness of metal film increases. Our results may find applications in optical switches and sensors at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alaeian, H., Dionne, J.A.: Non-Hermitian nanophotonic and plasmonic waveguides. Phys. Rev. B (2014). https://doi.org/10.1103/PhysRevB.89.075136

    Google Scholar 

  • Bao, Q., Loh, K.P.: Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5), 3677–3694 (2012)

    Article  Google Scholar 

  • Chen, J., Gan, F., Wang, Y., Li, G.: Plasmonic sensing and modulation based on Fano resonances. Adv. Opt. Mater. (2018). https://doi.org/10.1002/adom.201701152

    Google Scholar 

  • De Leon, I., Berini, P.: Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photonics 4(6), 382–387 (2010)

    Article  ADS  Google Scholar 

  • Deng, H., Ye, F., Malomed, B.A., Chen, X., Panoiu, N.C.: Optically and electrically tunable Dirac points and Zitterbewegung in graphene-based photonic superlattices. Phys. Rev. B (2015a). https://doi.org/10.1103/PhysRevB.91.201402

    Google Scholar 

  • Deng, H., Chen, X., Malomed, B.A., Panoiu, N.C., Ye, F.: Transverse Anderson localization of light near Dirac points of photonic nanostructures. Sci. Rep. (2015b). https://doi.org/10.1038/srep15585

    Google Scholar 

  • Deng, H., Chen, X., Malomed, B.A., Panoiu, N.C., Ye, F.: Tunability and robustness of Dirac points of photonic nanostructures. IEEE J. Sel. Top. Quantum Electr. (2016a). https://doi.org/10.1109/JSTQE.2016.2521711

    Google Scholar 

  • Deng, H., Chen, X., Panoiu, N.C., Ye, F.: Topological surface plasmons in superlattices with changing sign of the average permittivity. Opt. Lett. 41(18), 4281–4284 (2016b)

    Article  ADS  Google Scholar 

  • Ding, K., Zhang, Z.Q., Chan, C.T.: Coalescence of exceptional points and phase diagrams for one-dimensional PT-symmetric photonic crystals. Phys. Rev. B (2015). https://doi.org/10.1103/PhysRevB.92.235310

    Google Scholar 

  • Feng, L., et al.: Demonstration of a large-scale optical exceptional point structure. Opt. Express 22(2), 1760–1767 (2014)

    Article  ADS  Google Scholar 

  • Ge, L., Wang, L., Xiao, M., Wen, W., Chan, C.T., Han, D.: Topological edge modes in multilayer graphene systems. Opt. Express 23(17), 21585–21595 (2015)

    Article  ADS  Google Scholar 

  • Ge, L., Liu, L., Xiao, M., Du, G., Shi, L., Han, D., Chan, C.T., Zi, J.: Topological phase transition and interface states in hybrid plasmonic–photonic systems. J. Opt. 19(6), 1–5 (2017)

    Article  Google Scholar 

  • Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. (2009). https://doi.org/10.1103/PhysRevLett.103.093902

    Article  ADS  Google Scholar 

  • He, L., Zhang, Q., Lan, P., Cao, W., Zhu, X., Zhai, C., Wang, F., Shi, W., Li, M., Bian, X., Lu, P., Bandrauk, A.: Monitoring ultrafast vibrational dynamics of isotopic molecules with frequency modulation of high-order harmonics. Nat. Commun. (2018a). https://doi.org/10.1038/s41467-018-03568-3

    Google Scholar 

  • He, M., Li, Y., Zhou, Y., Li, M., Cao, Y., Lu, P.: Direct visualization of valence electron motion using strong-field photoelectron holography. Phys. Rev. Lett. (2018b). https://doi.org/10.1103/PhysRevLett.120.133204

    Google Scholar 

  • Hodaei, H., Hassan, A.U., Wittek, S., Garcia-Gracia, H., El-Ganainy, R., Christodoulides, D.N., Khajavikhan, M.: Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017)

    Article  ADS  Google Scholar 

  • Hong, Z., Rezvani, S., Zhang, Q., Lu, P.: Octave-spanning energy-scalable CEP-stabilized pulses from a dual-chirped noncollinear optical parametric amplifier. Opt. Quantum Electron. (2017). https://doi.org/10.1007/s11082-017-1209-y

    Google Scholar 

  • Hong, Z., Zhang, Q., Rezvani, S.: Tunable few-cycle pulses from a dual-chirped optical parametric amplifier pumped by broadband laser. Opt. Laser Technol. 98, 169–177 (2018)

    Article  ADS  Google Scholar 

  • Huang, Y., Veronis, G., Min, C.: Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points. Opt. Express 23(23), 29882–29895 (2015)

    Article  ADS  Google Scholar 

  • Huang, H., Ke, S., Wang, B., Long, H., Wang, K., Lu, P.: Numerical study on plasmonic absorption enhancement by a rippled graphene sheet. J. Lightwave Technol. 35(2), 320–324 (2017)

    Article  ADS  Google Scholar 

  • Ke, S., Wang, B., Qin, C., Long, H., Wang, K., Lu, P.: Exceptional points and asymmetric mode switching in plasmonic waveguides. J. Lightwave Technol. 34(22), 5258–5262 (2016)

    Article  ADS  Google Scholar 

  • Ke, S., Wang, B., Long, H., Wang, K., Lu, P.: Topological mode switching in a graphene doublet with exceptional points. Opt. Quantum Electron. 49(224), 1–12 (2017)

    Google Scholar 

  • Ke, S., Zhao, D., Liu, Q., Wu, S., Wang, B., Lu, P.: Optical imaginary directional couplers. J. Lightwave Technol. 36(12), 2510–2516 (2018)

    Article  ADS  Google Scholar 

  • Kou, Y., Ye, F., Chen, X.: Multiband vector plasmonic lattice solitons. Opt. Lett. 38(8), 1271–1273 (2013)

    Article  ADS  Google Scholar 

  • Lee, S.-Y.: Geometrical phase imprinted on eigenfunctions near an exceptional point. Phys. Rev. A (2010). https://doi.org/10.1103/PhysRevA.82.064101

    Google Scholar 

  • Li, T., Luo, L., Hupalo, M., Zhang, J., Tringides, M.C., Schmalian, J., Wang, J.: Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene. Phys. Rev. Lett. (2012). https://doi.org/10.1103/PhysRevLett.108.167401

    Google Scholar 

  • Li, L., Lan, P., He, L., Zhu, X., Chen, J., Lu, P.: Scaling law of high harmonic generation in the framework of photon channels. Phys. Rev. Lett. (2018). https://doi.org/10.1103/PhysRevLett.120.223203

    Google Scholar 

  • Lin, X., Li, R., Gao, F., Li, E., Zhang, X., Zhang, B., Chen, H.: Loss induced amplification of graphene plasmons. Opt. Lett. 41(4), 681–684 (2016a)

    Article  ADS  Google Scholar 

  • Lin, X., Rivera, N., López, J.J., Kaminer, I., Chen, H., Soljačić, M.: Tailoring the energy distribution and loss of 2D plasmons. New J. Phys. (2016b). https://doi.org/10.1088/1367-2630/18/10/105007

    Google Scholar 

  • Liu, Z., Zhang, Q., Liu, X., Yao, Y., Xiao, J.: Absence of exceptional points in square waveguide arrays with apparently balanced gain and loss. Sci. Rep. (2016). https://doi.org/10.1038/srep22711

    Google Scholar 

  • Ni, G.X., Wang, L., Goldflam, M.D., Wagner, M., Fe, Z., McLeo, A.S., Liu, M.K., Keilman, F., Özyilmaz, B., Castro Neto, A.H., Hone, J., Fogler, M.M., Basov, D.N.: Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photonics 10, 244–247 (2016)

    Article  ADS  Google Scholar 

  • Orlova, A.A., Zhukovsky IV, S.V., Iorsha, P.A.Belov: Controlling light with plasmonic multilayers. Photonics Nanostruct. Fundam. Appl. 12, 213–230 (2014)

    Article  ADS  Google Scholar 

  • Peng, L., Zhang, L., Yuan, J., Chen, C., Bao, Q., Qiu, C.W., Peng, Z., Zhang, K.: Gold nanoparticle mediated graphene plasmon for broadband enhanced infrared spectroscopy. Nanotechnology (2017). https://doi.org/10.1088/1361-6528/aa7453

    Google Scholar 

  • Qin, C., Wang, B., Long, H., Wang, K., Lu, P.: Nonreciprocal phase shift and mode modulation in dynamic graphene waveguides. J. Lightwave Technol. 34(16), 3877–3883 (2016)

    Google Scholar 

  • Qin, C., Zhou, F., Peng, Y., Sounas, D., Zhu, X., Wang, B., Dong, J., Zhang, X., Alù, A., Lu, P.: Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials. Phys. Rev. Lett. (2018). https://doi.org/10.1103/PhysRevLett.120.133901

    Google Scholar 

  • Sun, C., Rong, K., Wang, Y., Li, H., Gong, Q., Chen, J.: Plasmonic ridge waveguides with deep-subwavelength outside-field confinements. Nanotechnology (2016). https://doi.org/10.1088/0957-4484/27/6/065501

    Google Scholar 

  • Wang, B., Zhang, X., García-Vidal, F.J., Yuan, X., Teng, J.: Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays. Phys. Rev. Lett. (2012). https://doi.org/10.1103/PhysRevLett.109.073901

    Google Scholar 

  • Wang, Z., Wang, B., Long, H., Wang, K., Lu, P.: Surface plasmonic lattice solitons in semi-infinite graphene sheet arrays. J. Lightwave Technol. 35(14), 2960–2965 (2017a)

    Article  ADS  Google Scholar 

  • Wang, F., Qin, C.Z., Wang, B., Long, H., Wang, K., Lu, P.X.: Rabi oscillations of plasmonic supermodes in graphene multilayer arrays. IEEE J. Sel. Top. Quantum Electr. (2017b). https://doi.org/10.1109/JSTQE.2016.2537205

    Google Scholar 

  • Wang, S., Wang, B., Qin, C., Wang, K., Long, H.: Rabi oscillations of optical modes in a waveguide with dynamic modulation. Opt. Quantum Electron. (2017c). https://doi.org/10.1007/s11082-017-1220-3

    Google Scholar 

  • Wang, Y., Guo, Y., Liao, H., Li, Z., Gan, F., Sun, C., Chen, J.: Multichannel and binary-phase all-optical control with on-chip integrated subwavelength plasmonic waveguides. ACS Photonics 5(4), 1575–1582 (2018a)

    Article  Google Scholar 

  • Wang, F., Ke, S., Qin, C., Wang, B., Long, H., Wang, K., Lu, P.: Topological interface modes in graphene multilayer arrays. Opt. Laser Technol. 103, 272–278 (2018b)

    Article  ADS  Google Scholar 

  • Xie, H., Li, M., Luo, S., Li, Y., Tan, J., Zhou, Y., Cao, W., Lu, P.: Photoelectron holography and forward scattering in atomic ionization by elliptically polarized laser pulses. Opt. Lett. 43(14), 3220–3223 (2018)

    Article  ADS  Google Scholar 

  • Zhang, L., Zhang, Z., Kang, C., Cheng, B., Chen, L., Yang, X., Wang, J., Li, W., Wang, B.: Tunable bulk polaritons of graphene-based hyperbolic metamaterials. Opt. Express 22(11), 14022–14030 (2014)

    Article  ADS  Google Scholar 

  • Zhao, D., Wang, Z., Long, H., Wang, K., Wang, B., Lu, P.: Optical bistability in defective photonic multilayers doped by graphene. Opt. Quantum Electron. (2017). https://doi.org/10.1007/s11082-017-0999-2

    Google Scholar 

  • Zhen, B., Hsu, C., Igarashi, Y., Lu, L., Kaminer, I., Pick, A., Chua, S., Joannopoulos, J.D., Soljačić, M.: Spawning rings of exceptional points out of Dirac cones. Nature 525(7569), 354–358 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Program for Distinguished Middle-aged and Young Innovative Research Team in Higher Education of Hubei, China (No. T201806), the Campus Science Foundation Research Project of Wuhan Institute of Technology (No. K201821), and the National Science Foundation of China (No. 11747041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, S., Liu, J., Liu, Q. et al. Strong absorption near exceptional points in plasmonic waveguide arrays. Opt Quant Electron 50, 318 (2018). https://doi.org/10.1007/s11082-018-1584-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1584-z

Keywords

Navigation