Skip to main content
Log in

The effect of carrier gas flow rate on the growth of MoS2 nanoflakes prepared by thermal chemical vapor deposition

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Molybdenum disulfide nanoflakes (MoS2) are superior material for their semiconducting properties. For bulk and monolayer MoS2 the band gap changes from indirect-to-direct, respectively. So, it exhibits promising prospects in the applications of optoelectronics and valleytronics, such as solar cells, transistors, photodetectors, etc. In this research, the influence of different Ar flow rates as the carrier gas, is investigated for growing MoS2 nanoflakes on silicon substrates using one-step thermal chemical vapor deposition by simultaneously evaporating of solid sources like sulfur and molybdenum trioxide powders. The structural and optical properties of the obtained nanoflakes are assessed by using X-ray diffraction pattern, scanning electron microscopy, UV–visible absorption, photoluminescence and Raman spectroscopy. It is shown that, Ar gas flow rate is strongly affects on the final products as few-layer MoS2 structures. Moreover, the abundance of MoS2 in comparison to MoO2 and MoO3 structures, in the obtained nanoflakes, is influenced by the Ar flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baek, S.H., Choi, Y., Choi, W.: Large-area growth of uniform single-layer MoS2 thin films by chemical vapor deposition. Nanoscale Res. Lett. (2015). https://doi.org/10.1186/s11671-015-1094-x

    Google Scholar 

  • Balendhran, S., Ou, J.Z., Bhaskaran, M., Sriram, S., Ippolito, S., Vasic, Z., Kats, E., Bhargava, S., Zhuiykov, S., Kalantar-zadeh, K.: Atomically thin layers of MoS2 via two step thermal evaporation–exfoliation method. Nanoscale 4, 461–466 (2012)

    Article  ADS  Google Scholar 

  • Cao, Y., Luo, X., Han, S., Yuan, C., Yang, Y., Li, Q., Yu, T., Ye, S.: Influence of carrier gas flow rate on the morphologies of MoS2 flakes. Chem. Phys. Lett. 631–632, 30–33 (2015)

    Article  Google Scholar 

  • Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H.Y., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grieveson, E.M., Theuwissen, K., McComb, D.W., Nellist, P.D., Nicolosi, V.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011)

    Article  ADS  Google Scholar 

  • Dumcenco, D., Ovchinnikov, D., Marinov, K., Lopez-Sanchez, O., Krasnozhon, D., Chen, M.W., Gillet, P., Morral, A.F., Radenovic, A., Kis, A.: Large-area epitaxial monolayer MoS2. ACS Nano 9, 4611–4620 (2015)

    Article  Google Scholar 

  • Frindt, R.F., Yoffe, A.D.: Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc R Soc Lond Ser A 273, 69–83 (1963)

    Article  ADS  Google Scholar 

  • Gatensby, R., McEvoy, N., Lee, K., Hallam, T., Berner, N.C., Rezvani, E., Winters, S., O’Brien, M., Duesberg, G.S.: Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Appl. Surf. Sci. 297, 139–146 (2014)

    Article  ADS  Google Scholar 

  • Hao, L., Liu, Y., Gao, W., Han, Z., Xue, Q., Zeng, H., Wu, Z., Zhu, J., Zhang, W.: Electrical and photovoltaic characteristics of MoS2/Si p–n junctions. Appl. Phys. (2015). https://doi.org/10.1063/1.4915951

    Google Scholar 

  • Hussain, S., Shehzad, M.A., Vikraman, D., Iqbal, M.Z., Singh, J., Khan, M.F., Eom, J., Seo, Y., Jung, J.: Controlled synthesis and optical properties of polycrystalline molybdenum disulfide atomic layers grown by chemical vapor deposition. J. Alloys Compd. 653, 369–378 (2015)

    Article  Google Scholar 

  • Joensen, P., Frindt, R.F., Morrison, S.R.: A study of single-layer and restacked MoS2, by x-ray diffraction and x-ray absorption spectroscopy. Solid State Phys. 20, 4043–4053 (1987)

    Article  ADS  Google Scholar 

  • Kaushik, V., Varandani, D., Mehta, B.R.: Nanoscale mapping of layer-dependent surface potential and junction properties of CVD grown MoS2 domains. J. Phys. Chem. 119, 20136–20142 (2015)

    Google Scholar 

  • Kim, J.H., Lee, J., Kim, J.H., Hwang, C., Lee, C., Park, J.Y.: Work function variation of MoS2 atomic layers grown with chemical vapor deposition: the effects of thickness and the adsorption of water/oxygen molecules. Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4923202

    Google Scholar 

  • Lee, C., Yan, H., Brus, L.E., Heinz, T.F., Hone, J., Ryu, S.: Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010)

    Article  Google Scholar 

  • Lee, Y.H., Yu, L., Wang, H., Fang, W., Ling, X., Shi, Y., Lin, C.T., Huang, J.K., Chang, M.T., Chang, C.S., Dresselhaus, M., Palacios, T., Li, L.J., Kong, J.: Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13, 1852–1857 (2013)

    Article  ADS  Google Scholar 

  • Li, H., Zhang, Q., Ray Yap, C.C., Tay, B.K., Tong Edwin, T.H., Olivier, A.: Baillargeat, D,: From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012a)

    Article  Google Scholar 

  • Li, S.L., Miyazaki, H., Song, H., Kuramochi, H., Nakaharai, S., Tsukagoshi, K.: Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. ACS Nano 6, 7381–7388 (2012b)

    Article  Google Scholar 

  • Li, H., Wu, J., Yin, Z., Zhang, H.: Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 47, 1067–1075 (2014)

    Article  Google Scholar 

  • Li, Y., Yu, Y., Nielsen, R.A., Goddard, W.A., Li, Y., Cao, L.: Engineering the composition and crystallinity of molybdenum sulfide for high-performance electrocatalytic hydrogen evolution. ACS Catal. 5, 448–455 (2015)

    Article  Google Scholar 

  • Li, S., Wang, S., Salamone, M.M., Robertson, A.W., Nayak, S., Kim, H., Tsang, S.C.E., Pasta, M., Warner, J.H.: Edge-enriched 2D MoS2 thin films grown by chemical vapor deposition for enhanced catalytic performance. ACS Catal. 7, 877–886 (2017)

    Article  Google Scholar 

  • Lin, Y.C., Zhang, W., Huang, J.K., Liu, K.K., Lee, Y.H., Liang, C.T., Chu, C.W., Li, L.J.: Wafer scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4, 6637–6641 (2012)

    Article  ADS  Google Scholar 

  • Ling, X., Lee, Y.H., Lin, Y., Fang, W., Yu, L., Dresselhaus, M.S., Kong, J.: Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 14, 464–472 (2014)

    Article  ADS  Google Scholar 

  • Liu, K.K., Zhang, W.J., Lee, Y.H., Lin, Y.C., Chang, M.T., Su, C.Y., Chang, C.S., Li, H., Shi, Y.M., Zhang, H., Lai, C.S., Li, L.J.: Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012)

    Article  ADS  Google Scholar 

  • Liu, X., He, J., Liu, Q., Tang, D., Wen, J., Liu, W., Yu, W., Wu, J., He, Z., Lu, Y., Zhu, D., Liu, W., Cao, P., Han, S., Ang, K.W.: Low temperature carrier transport study of monolayer MoS2 field effect transistors prepared by chemical vapor deposition under an atmospheric pressure. Appl. Phys. (2015). https://doi.org/10.1063/1.4931617

    Google Scholar 

  • Liu, P., Liu, Y., Ye, W., Ma, J., Gao, D.: Flower like n-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation. Nanotechnology (2016). https://doi.org/10.1088/0957-4484/27/22/225403

    Google Scholar 

  • Liu, H., Zhu, Y., Meng, Q., Lu, X., Kong, S., Huang, Z., Jiang, P., Bao, X.: Role of the carrier gas flow rate in monolayer MoS2 growth by modified chemical vapor deposition. Nano Res. 10, 643–651 (2017)

    Article  Google Scholar 

  • López, N.P., Lin, Z., Pradhan, N.R., Rábago, A.I., Elías, A.L., McCreary, A., Lou, J., Ajayan, P.M., Terrones, H., Balicas, L., Terrones, M.: CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Mater. (2014). https://doi.org/10.1088/2053-1583/1/1/011004

    Google Scholar 

  • Mahyavanshi, R.D., Mahyavanshi, G., Sharma, K.P., Kondo, M., Dewa, T., Kawahara, T., Tanemura, M.: Synthesis of MoS2 ribbons and their branched structures by chemical vapor deposition in sulfur enriched environment Appl. Surf. Phys. 409, 396–402 (2017)

    ADS  Google Scholar 

  • Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. (2010). https://doi.org/10.1103/PhysRevLett.105.136805

    Google Scholar 

  • Nikpay, M.A., Mortazavi, S.Z., Reyhani, A., Elahi, S.M.: Sputtered MoS2 layer as a promoter in the growth of MoS2 nanonanoflakes by TCVD. Mater. Res. Express. (2018). https://doi.org/10.1088/2053-1591/aaa22d

    Google Scholar 

  • Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. PNAS 30, 10451–10453 (2005)

    Article  Google Scholar 

  • Perkgoz, N.K., Bay, M.: Investigation of single-wall MoS2 monolayer flakes grown by chemical vapor deposition. Nano Micro Lett. 8, 70–79 (2016)

    Article  Google Scholar 

  • Plechinger, G., Mann, J., Preciado, E., Barroso, D., Nguyen, A., Eroms, J., Sch¨uller, C., Bartels, L., Korn, T.: A direct comparison of CVD-grown and exfoliated MoS2 using optical spectroscopy. Semicond. Sci. Technol. (2014). https://doi.org/10.1088/0268-1242/29/6/064008

    Google Scholar 

  • Qiu, X.J., Cao, Z.Z., Cheng, Y.F., Qin, C.C.: Spin and valley-dependent electron transport through arrays of ferromagnet on monolayer MoS2. J. Phys. Condens. Matter (2017). https://doi.org/10.1088/1361-648X/aa58c4

    Google Scholar 

  • Rao, C.N.R., Maitra, U., Waghmare, U.V.: Extraordinary attributes of 2-dimensional MoS2 nanosheets. Chem. Phys. Lett. 609, 172–183 (2014)

    Article  ADS  Google Scholar 

  • Robinson, B.J., Giusca, C.E., Gonzalez, Y.T., Kay, N.D., Kazakova, O., Kolosov, O.V.: Structural, optical and electrostatic properties of single and few layers MoS2: effect of substrate. 2D Mater. (2015). https://doi.org/10.1088/2053-1583/2/1/015005

    Google Scholar 

  • Ross, J.S., Rivera, P., Schaibley, J.R., Wong, E.L., Yu, H., Taniguchi, T., Watanabe, K., Yan, J., Mandrus, D., Cobden, D.H., Yao, W., Xu, X.: Interlayer exciton optoelectronics in a 2D heterostructure p-n junction. Nano Lett. 17, 638–643 (2017)

    Article  ADS  Google Scholar 

  • Schrader, G.L., Cheng, C.P.: In situ laser Raman spectroscopy of sulfiding of Mo/ɣ-Al2O3 catalysts. J. Catal. 80, 369–385 (1983)

    Article  Google Scholar 

  • Siegel, G., Subbaiah, Y.P.V., Prestgard, M.C., Tiwari, A.: Growth of centimeter-scale atomically thin MoS2 films by pulsed laser deposition. Apl Mater. (2015). https://doi.org/10.1063/1.4921580

    Google Scholar 

  • Singh, E., Kim, K.S., Yeom, G.Y., Nalwa, H.S.: Atomically thin-layered molybdenum disulfide. ACS Appl. Mater. Interfaces 9, 3223–3245 (2017)

    Article  Google Scholar 

  • Smith, R.J., King, P.J., Lotya, M., Wirtz, C., Khan, U., De, S., O’Neill, A., Duesberg, G.S., Grunlan, J.C., Moriarty, G., Chen, J., Wang, J., Minett, A.I., Nicolosi, V., Coleman, J.N.: Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23, 3944–3948 (2011)

    Article  Google Scholar 

  • Song, I., Park, C., Choi, H.C.: Synthesis and properties of molybdenum disulfide: from bulk to atomic layers. RSC Adv. 5, 7495–7514 (2015a)

    Article  Google Scholar 

  • Song, Y., Peng, Y., You, S., Sun, K., Chen, J., Qian, Z.: Effect of processing parameters on microstructure of MoS2 ultra-thin films synthesized by chemical vapor deposition method. AIP Adv. (2015b). https://doi.org/10.1063/1.4922419

    Google Scholar 

  • Tsai, M.L., Su, S.H., Chang, J.K., Tsai, D.S., Chen, C.H., Wu, C.I., Li, L.J., Chen, L.J., He, J.H.: Monolayer MoS2 heterojunction solar cells. ACS Nano 8, 8317–8322 (2014)

    Article  Google Scholar 

  • Tsuboi, Y., Wang, F., Kozawa, D., Funahashi, K., Mouri, S., Miyauchi, Y., Takenobub, T., Matsuda, K.: Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS2 thin film. Nanoscale (2015). https://doi.org/10.1039/c5nr03046c

    Google Scholar 

  • Visic, B., Dominko, R., Gunde, M.K., Hauptman, N., Skapin, S.D., Remskar, M.: Optical properties of exfoliated MoS2 coaxial nanotubes—analogues of grapheme. Nanoscale Res. Lett. (2011). https://doi.org/10.1186/1556-276X-6-593

    Google Scholar 

  • Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    Article  ADS  Google Scholar 

  • Wang, X., Feng, H., Wu, Y., Jiao, L.: Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 135, 5304–5307 (2013)

    Article  Google Scholar 

  • Wang, X., Xing, W., Feng, X., Song, L., Hu, Y.: MoS2/polymer nanocomposites: preparation, properties, and applications. Polym. Rev. 57, 440–446 (2017)

    Article  Google Scholar 

  • Xu, Y.Y., Yang, C., Jiang, S.Z., Man, B.Y., Liu, M., Chen, C.S., Zhang, C., Sun, Z.C., Qju, H.W., Li, H.S., Feng, D.J., Zhang, J.X.: Layered controlled large area MoS2 layers grown on mica substrate for surface-enhanced Raman scattering. Appl. Surf. Sci. 357, 1708–1713 (2015)

    Article  ADS  Google Scholar 

  • Yang, X., Li, Q., Hu, G., Wang, Z., Yang, Z., Liu, X., Dong, M., Pan, C.: Controlled synthesis of high-quality crystals of monolayer MoS2 for nano electronic device application. Sci. China Mater. 59, 182–190 (2016)

    Article  Google Scholar 

  • Ye, M., Winslow, D., Zhang, D., Pandey, R., Yap, Y.K.: Recent advancement on the optical properties of two-dimensional molybdenum disulfide (MoS2) thin films. Photonics 2, 288–307 (2015)

    Article  Google Scholar 

  • Yim, C., O’Brien, M., McEvoy, N., Winters, S., Mirza, I., Lunney, J.G., Duesberg, G.S.: Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4868108

    Google Scholar 

  • Yoo, Y., Degregorio, Z.P., Johns, J.E.: Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc. 137, 14281–14287 (2015)

    Article  Google Scholar 

  • Yu, Y., Li, C., Liu, Y., Su, L., Zhang, Y., Cao, L.: Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. (2013). https://doi.org/10.1038/srep01866

    Google Scholar 

  • Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P.M., Lou, J.: Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012)

    Article  Google Scholar 

  • Zhao, B., Wang, Z., Gao, Y., Chen, L., Lu, M., Jiao, Z., Jiang, Y., Ding, Y.Z., Cheng, L.: Hydrothermal synthesis of layer-controlled MoS2/graphene composite aerogels for lithium-ion battery anode materials. Appl. Surf. Sci. 390, 209–215 (2016)

    Article  ADS  Google Scholar 

  • Zhaoa, Y., Zhanga, X., Wanga, C., Zhaob, Y., Zhoub, H., Lia, J., Jin, H.: The synthesis of hierarchical nanostructured MoS2/graphene composites with enhanced visible-light photo-degradation property. Appl. Surf. Sci. 412, 207–213 (2017)

    Article  ADS  Google Scholar 

  • Zheng, J., Yan, X., Lu, Z., Qiu, H., Xu, G., Zhou, X., Wang, P., Pan, X., Liu, K., Jiao, L.: High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv. Mater. (2017). https://doi.org/10.1002/adma.201604540

    Google Scholar 

  • Zhu, W., Low, T., Lee, Y.H., Farmer, H.D.B., Kong, J., Xia, F., Avouris, P.: Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. (2014). https://doi.org/10.1038/ncomms4087

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Iran Science Elites Federation under Grant 11/66332 dated 2015/05/20, and the Research Council of Imam Khomeini International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedeh Zahra Mortazavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikpay, M.A., Mortazavi, S.Z., Reyhani, A. et al. The effect of carrier gas flow rate on the growth of MoS2 nanoflakes prepared by thermal chemical vapor deposition. Opt Quant Electron 50, 252 (2018). https://doi.org/10.1007/s11082-018-1512-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1512-2

Keywords

Navigation