Skip to main content
Log in

Performance of coherent detection in optical wireless systems for high speed indoor communications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

At a time of dramatically increasing bandwidth demand, the choice of the broadband technology adapted to future indoor applications, deserves serious consideration in the near term. Optical wireless technology goes beyond the capabilities of conventional radio communication systems and presents a realistic supplement to its counterpart. In this paper, a high-speed optical wireless communication system based on coherent reception technology is studied. Our analysis includes laser phase noise which, to the extent of our knowledge, has not been adequately addressed in the literature in the field of optical wireless. We also consider the influence of multipath-induced distortion. Our results indicate that coherent detection may significantly alleviate the power budget of line-of-sight and non-line-of-sight configurations. It can enable Gb/s wireless data transmission under moderate transmission powers consistent with eye safety regulations and the operational properties of optical transmitters typically found in the commercial marketplace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atzmon, Y., Nazarathy, M.: Laser phase noise in coherent and differential optical transmission revisited in the polar domain. IEEE J. Lightwave Technol. 27, 19–29 (2009)

    Article  ADS  Google Scholar 

  • Audeh, M.D., Kahn, J.M., Barry, J.R.: Decision-feedback equalization of pulse-position modulation on measured nondirected indoor infrared channels. IEEE Trans. Commun. 47, 500–503 (1999)

    Article  Google Scholar 

  • Barry, J.R., Kahn, J.M., Krause, W.J., Lee, E.A., Messerschmitt, D.G.: Simulation of multipath impulse response for indoor wireless optical channels. IEEE J. Sel. Areas Commun. 11, 367–379 (1993)

    Article  Google Scholar 

  • Barry, J.R., Lee, E.A.: Performance of coherent optical receivers. Proc. IEEE 78, 1369–1394 (1990)

    Article  Google Scholar 

  • Belmonte, A., Kahn, J.M.: Fundamental limits of diversity coherent reception on atmospheric optical channels. In: IEEE Conference Record of the Forty-Third Asilomar. Conference on Signals, Systems and Computers, pp. 1621–1625 (2009)

  • Einarsson, G., Strandberg, J., Monroy, I.T.: Error probability evaluation of optical systems disturbed by phase noise and additive noise. IEEE J. Lightwave Technol. 13, 1847–1852 (1995)

    Article  ADS  Google Scholar 

  • Fludger, C.R.S., Duthel, T., van den Borne, D., Schulien, C., Schmidt, E.-D., Wuth, T., Geyer, J., de Man, E., Khoe, G.-D., De Waardt, H.: Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission. IEEE J. Lightwave Technol. 26, 64–72 (2008)

    Article  ADS  Google Scholar 

  • Foschini, G.J., Vannucci, G.: Characterizing filtered light waves corrupted by phase noise. IEEE Trans. Inf. Theory 34, 1437–1448 (1988)

    Article  Google Scholar 

  • Green Jr, P.E.: Fiber Optic Networks, 1st edn. Prentice-Hall, Englewood Cliffs NJ (1993)

    Google Scholar 

  • Heatley, D.J.T., Wisely, D.R., Neild, I., Cochrane, P.: Optical wireless: the story so far. IEEE Commun. Mag. 36(72–74), 79–82 (1998)

    Google Scholar 

  • Kahn, J. M.: Modulation and Detection Techniques for Optical Communication Systems. OSA Optical Amplifiers and Their Applications / Coherent Optical Technologies and Applications. Technical Digest (CD). CThC1 (2006)

  • Kahn, J.M., Barry, J.R.: Wireless infrared communications. Proc. IEEE 85, 265–298 (1997)

    Article  Google Scholar 

  • Kahn, J.M., Krause, W.J., Carruthers, J.B.: Experimental characterization of non-directed indoor infrared channels. IEEE Trans. Commun. 43, 1613–1623 (1995)

    Article  Google Scholar 

  • Kaiser, C.P., Shafi, M., Smith, P.J.: Analysis methods for opstical heterodyne DPSK receivers corrupted by laser phase noise. IEEE J. Lightwave Technol. 11, 1820–1830 (1993)

    Article  ADS  Google Scholar 

  • Kaiser, C.P., Smith, P.J., Shafi, M.: An improved optical heterodyne DPSK receiver to combat laser phase noise. IEEE J. Lightwave Technol. 13, 525–533 (1995)

    Article  ADS  Google Scholar 

  • Katz, G., Sadot, D., Tabrikian, J.: Electrical dispersion compensation equalizers in optical direct- and coherent-detection systems. IEEE Trans. Commun. 54, 2045–2050 (2006)

    Article  Google Scholar 

  • Lopez-Hernandez, J., Perez-Jimenez, R., Santamaria, A.: Modified Monte Carlo scheme for high-efficiency simulation of the impulse response on diffuse IR wireless indoor channels. Electron. Lett. 34, 1819–1820 (1998)

    Article  Google Scholar 

  • Ntogari, G., Kamalakis, T., Sphicopoulos, T.: Performance analysis of non-directed equalized indoor optical wireless systems. In: IEEE 6th International Symposium on Communication Systems, Networks and Digital Signal Processing. CSNDSP08 Graz, pp. 156–160 (2008)

  • Ntogari, G., Kamalakis, T., Sphicopoulos, T.: Analysis of indoor multiple-input multiple-output coherent optical wireless systems. IEEE J. Lightwave Technol. 30, 317–324 (2012)

    Article  ADS  Google Scholar 

  • O’Brien, D.C., Katz, M.: Optical wireless communications within fourth-generation wireless systems [invited]. IEEE OSA J. Opt. Netw. 4, 312–322 (2005)

    Article  Google Scholar 

  • Rice, J.A.: Mathematical Statistics and Data Analysis, 2nd edn. Duxbury Press, Belmont, CA (1995)

    MATH  Google Scholar 

  • Wang, K., Nirmalathas, A., Lim, C., Skafidas, E.: Experimental demonstration of a full-duplex indoor optical wireless communication system. IEEE Photonics Technol. Lett. 24, 188–190 (2012)

    Article  ADS  Google Scholar 

  • Wang, K., Nirmalathas, A., Lim, C., Skafidas, E.: 4x12.5 Gb/s WDM optical wireless communication system for indoor applications. IEEE J. Lightwave Technol. 29, 1988–1996 (2011)

    Article  ADS  Google Scholar 

  • Wang, Z., Zhong, W.-D., Fu, S., Lin, C.: Performance comparison of different modulation formats over free-space optical (FSO) turbulence links with space diversity reception technique. IEEE Photonics J. 1, 277–285 (2009)

    Article  Google Scholar 

  • Xia, P., Qin, X., Niu, H., Singh, H., Shao, H., Oh, J., Kweon, C.Y., Kim, S.S., Yong, S.K., Ngo, C.: Short range gigabit wireless communications systems: potentials, challenges and techniques. In: IEEE International Conference on Ultra-Wideband, 2007. ICUWB 2007, pp. 123–128 (2007)

Download references

Acknowledgments

The research reported in this paper was fully supported by the “ARISTEIA \(\mathrm{I}\mathrm{I}\)” Action (“COWS” project) of the “Operational programme Education and Life Long Learning” and is co-funded by the European Social Fund (ESF) and the Greek state.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Margariti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margariti, K., Kamalakis, T. Performance of coherent detection in optical wireless systems for high speed indoor communications. Opt Quant Electron 47, 985–1003 (2015). https://doi.org/10.1007/s11082-014-9956-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-9956-5

Keywords

Navigation