Skip to main content
Log in

A fast first-order optimization approach to elastoplastic analysis of skeletal structures

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

It is classical that, when the small deformation is assumed, the incremental analysis problem of an elastoplastic structure with a piecewise-linear yield condition and a linear strain hardening model can be formulated as a convex quadratic programming problem. Alternatively, this paper presents a different formulation, an unconstrained nonsmooth convex optimization problem, and proposes to solve it with an accelerated gradient-like method. Specifically, we adopt an accelerated proximal gradient method, that has been developed for a regularized least squares problem. Numerical experiments show that the presented algorithm is effective for large-scale elastoplastic analysis. Also, a simple warm-start strategy can speed up the algorithm when the path-dependent incremental analysis is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Conversion to SOCP is not unique.

References

  • Acary V, Brogliato B (2008) Numerical methods for nonsmooth dynamical systems. Springer, Berlin

    MATH  Google Scholar 

  • Anjos MF, Lasserre JB (eds) (2012) Handbook on semidefinite, conic and polynomial optimization. Springer, New York

    MATH  Google Scholar 

  • Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2:183–202

    Article  MathSciNet  MATH  Google Scholar 

  • Benson HY, Shanno DF (2007) An exact primal-dual penalty method approach to warm-starting interior-point methods for linear programming. Comput Optim Appl 38:371–399

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization: analysis, algorithms, and engineering applications. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Bergamaschi L, Gondzio J, Venturin M, Zilli G (2011) Inexact constraint preconditioners for linear systems arising in interior point methods. Comput Optim Appl 36:137–147. Erratum: Comput Optim Appl 49:401–406

  • Bisbos CD, Makrodimopoulos A, Pardalos PM (2005) Second-order cone programming approaches to static shakedown analysis in steel plasticity. Optim Methods Softw 20:25–52

    Article  MathSciNet  MATH  Google Scholar 

  • Calafiore G, El Ghaoui L (2014) Optimization models. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Capurso M, Maier G (1970) Incremental elastoplastic analysis and quadratic optimization. Meccanica 5:107–116

    Article  MATH  Google Scholar 

  • Carbonetto P (2014) MATLAB interface for IPOPT. http://www.cs.ubc.ca/~pcarbo/ipopt-for-matlab/

  • Čermák M, Kozubek T, Sysala S, Valdman J (2014) A TFETI domain decomposition solver for elastoplastic problems. Appl Math Comput 231:634–653

    MathSciNet  Google Scholar 

  • Chambolle A, DeVore RA, Lee N-Y, Lucier BJ (1998) Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans Image Process 7:319–335

    Article  MathSciNet  MATH  Google Scholar 

  • Combettes PL, Wajs VR (2005) Signal recovery by proximal forward-backward splitting. Multiscale Model Simul 4:1168–1200

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies I, Defrise M, De Mol C (2004) An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun Pure Appl Math 57:1413–1457

    Article  MathSciNet  MATH  Google Scholar 

  • De Donato O, Maier G (1976) Historical deformation analysis of elastoplastic structures as a parametric linear complementarity problem. Meccanica 11:166–171

    Article  MATH  Google Scholar 

  • de Souza Neto EA, Perić D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, Chichester

    Book  Google Scholar 

  • Dirkse SP, Ferris MC (1995) The PATH solver: a nommonotone stabilization scheme for mixed complementarity problems. Optim Methods Softw 5:123–156

    Article  Google Scholar 

  • Ferris MC, Munson TS (1999) Interfaces to PATH 3.0: design, implementation and usage. Comput Optim Appl 12:207–227

    Article  MathSciNet  MATH  Google Scholar 

  • Ferris MC, Munson TS (2000) Complementarity problems in GAMS and the PATH solver. J Econ Dyn Control 24:165–188

    Article  MathSciNet  MATH  Google Scholar 

  • Figueiredo MAT, Nowak RD (2003) An EM algorithm for wavelet-based image restoration. IEEE Trans Image Process 12:906–916

    Article  MathSciNet  MATH  Google Scholar 

  • Goldstein T, O’Donoghue B, Setzer S, Baraniuk R (2014) Fast alternating direction optimization methods. SIAM J Imaging Sci 7:1588–1623

    Article  MathSciNet  MATH  Google Scholar 

  • Grierson DE, Franchi A, DeDonato O, Corradi L (1979) Mathematical programming and nonlinear finite element analysis. Comput Methods Appl Mech Eng 17–18:497–518

    Article  MATH  Google Scholar 

  • Han W, Reddy BD (2013) Plasticity, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Horn RA, Johnson CR (2013) Matrix analysis, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • John E, Yıldırım EA (2008) Implementation of warm-start strategies in interior-point methods for linear programming in fixed dimension. Comput Optim Appl 41:151–183

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson CA, Seidel J, Sofer A (2000) Interior-point methodology for 3-D PET reconstruction. IEEE Trans Med Imaging 19:271–285

    Article  Google Scholar 

  • Kaneko I (1979) Piecewise linear elastic-plastic analysis. Int J Numer Meth Eng 14:757–767

    Article  MATH  Google Scholar 

  • Kaneko I (1980) Complete solutions for a class of elastic-plastic structures. Comput Methods Appl Mech Eng 21:193–209

    Article  MathSciNet  MATH  Google Scholar 

  • Kanno Y (2011) Nonsmooth mechanics and convex optimization. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Kanno Y, Martins JAC, Pinto da Costa A (2006) Three-dimensional quasi-static frictional contact by using second-order cone linear complementarity problem. Int J Numer Meth Eng 65:62–83

    Article  MathSciNet  MATH  Google Scholar 

  • Kanno Y, Ohsaki M, Ito J (2002) Large-deformation and friction analysis of nonlinear elastic cable networks by second-order cone programming. Int J Numer Methods Eng 55:1079–1114

    Article  MathSciNet  MATH  Google Scholar 

  • Kim S-J, Koh K, Lustig M, Boyd S, Gorinevsky D (2007) An interior-point method for large-scale \(\ell _{1}\)-regularized least squares. IEEE J Select Topics Signal Process 1:606–617

    Article  Google Scholar 

  • Krabbenhøft K, Lyamin AV (2012) Computational Cam clay plasticity using second-order cone programming. Comput Methods Appl Mech Eng 209–212:239–249

    Article  MathSciNet  MATH  Google Scholar 

  • Krabbenhøft K, Lyamin AV, Sloan SW (2007a) Formulation and solution of some plasticity problems as conic programs. Int J Solids Struct 44:1533–1549

    Article  MATH  Google Scholar 

  • Krabbenhøft K, Lyamin AV, Sloan SW, Wriggers P (2007b) An interior-point algorithm for elastoplasticity. Int J Numer Methods Eng 69:592–626

    Article  MathSciNet  MATH  Google Scholar 

  • Krichene W, Bayen AM, Bartlett PL (2015) Accelerated mirror descent in continuous and discrete time. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in neural information processing systems 28 (NIPS 2015). Curran Associates, Red Hook, pp 2845–2853

    Google Scholar 

  • Li H, Lin Z (2015) Accelerated proximal gradient methods for nonconvex programming. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in neural information processing systems 28 (NIPS 2015). Curran Associates, Red Hook, pp 379–387

    Google Scholar 

  • Maier G (1968) A quadratic programming approach for certain classes of non-linear structural problems. Meccanica 3:121–130

    Article  MathSciNet  MATH  Google Scholar 

  • Maier G (1970) A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes. Meccanica 5:54–66

    Article  MATH  Google Scholar 

  • Maier G (1984) Mathematical programming applications to structural mechanics: some introductory thoughts. Eng Struct 6:2–6

    Article  Google Scholar 

  • Maier G, Munro J (1982) Mathematical programming applications to engineering plastic analysis. Appl Mech Rev (ASME) 35:1631–1643

    Google Scholar 

  • Makrodimopoulos A (2006) Computational formulation of shakedown analysis as a conic quadratic optimization problem. Mech Res Commun 33:72–83

    Article  MATH  Google Scholar 

  • Mitchell JE (2001) Restarting after branching in the SDP approach to MAX-CUT and similar combinatorial optimization problem. J Combin Optim 5:151–166

    Article  MATH  Google Scholar 

  • Nesterov Y (2004) Introductory lectures on convex optimization: a basic course. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  • Nineb S, Alart P, Dureisseix D (2007) Domain decomposition approach for non-smooth discrete problems, example of a tensegrity structure. Comput Struct 85:499–511

    Article  Google Scholar 

  • O’Donoghue B, Candès E (2015) Adaptive restart for accelerated gradient schemes. Found Comput Math 15:715–732

    Article  MathSciNet  MATH  Google Scholar 

  • Parikh N, Boyd S (2014) Proximal algorithms. Found Trends Optim 1:127–239

    Article  Google Scholar 

  • Portugal LF, Resende MGC, Veiga G, Júdice JJ (2000) A truncated primal-infeasible dual-feasible network interior point method. Networks 35:91–108

    Article  MathSciNet  MATH  Google Scholar 

  • Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  • Smith DL (1978) The Wolfe–Markowitz algorithm for nonholonomic elastoplastic analysis. Eng Struct 1:8–16

    Article  Google Scholar 

  • Spiliopoulos KV, Patsios TN (2010) An efficient mathematical programming method for the elastoplastic analysis of frames. Eng Struct 32:1199–1214

    Article  Google Scholar 

  • Su W, Boyd S, Candès EJ (2014) A differential equation for modeling Nesterov’s accelerated gradient method: theory and insights. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ (eds) Advances in neural information processing systems 27 (NIPS 2014). Curran Associates, Red Hook, pp 2510–2518

    Google Scholar 

  • Tangaramvong S, Tin-Loi F (2007) A complementarity approach for elastoplastic analysis of strain softening frames under combined bending and axial force. Eng Struct 29:742–753

    Article  Google Scholar 

  • Tangaramvong S, Tin-Loi F (2008) Simultaneous ultimate load and deformation analysis of strain softening frames under combined stresses. Eng Struct 30:664–674

    Article  Google Scholar 

  • Tangaramvong S, Tin-Loi F, Song C (2012) A direct complementarity approach for the elastoplastic analysis of plane stress and plane strain structures. Int J Numer Methods Eng 90:838–866

    Article  MathSciNet  MATH  Google Scholar 

  • The MathWorks, Inc.: MATLAB Documentation. http://www.mathworks.com/. Accessed Dec 2014

  • Tin-Loi F, Xia SH (2001) Nonholonomic elastoplastic analysis involving unilateral frictionless contact as a mixed complementarity problem. Comput Methods Appl Mech Eng 190:4551–4568

    Article  MATH  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58:267–288

    MathSciNet  MATH  Google Scholar 

  • Tibshirani R (2011) Regression shrinkage and selection via the lasso: a retrospective. J R Stat Soc Ser B (Methodol) 73:273–282

    Article  MathSciNet  Google Scholar 

  • Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106:25–57

    Article  MathSciNet  MATH  Google Scholar 

  • Wakefield RR, Tin-Loi F (1990) Large scale nonholonomic elastoplastic analysis using a linear complementarity formulation. Comput Methods Appl Mech Eng 84:229–242

    Article  MATH  Google Scholar 

  • Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Yonekura K, Kanno Y (2012) Second-order cone programming with warm start for elastoplastic analysis with von Mises yield criterion. Optim Eng 13:181–218

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to Wataru Shimizu for fruitful discussions. This work is partially supported by JSPS KAKENHI (C) 26420545 and (C) 15KT0109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Kanno.

Appendices

Appendix 1: SOCP formulation of problem (12)

In this section, we explain how problem (12) is recast as a second-order cone programming (SOCP) problem.

The second-order cone in \({\mathbb {R}}^{n}\) is defined by

$${ \mathcal {L}}^{n} = \left\{ (x_{0},x_{1},\dots ,x_{n-1})^{\top } \in {\mathbb {R}}^{n} \Bigm | x_{0} \ge \sqrt{x_{1}^{2}+\dots +x_{n-1}^{2}} \right\} . $$

SOCP is a minimization (or maximization) of a linear objective function under some second-order cone constraints and affine constraints.

The inequality constraints in (12c) can be written as second-order cone constraints as

$$\begin{aligned} \begin{bmatrix} \Delta \gamma _{i} \\ \Delta c_{{\text{p}}i} \\ \end{bmatrix} \in{ \mathcal {L}}^{2} , \quad i=1,\dots ,m . \end{aligned}$$

The constraints in (12b) are affine (i.e., linear equality) constraints. To convert the objective function to a linear one, we introduce auxiliary variables, \(\xi \in {\mathbb {R}}\) and \(\zeta \in {\mathbb {R}}\), that serve as upper bounds for the quadratic terms in (12a). Namely, we consider the following constraints:

$$\begin{aligned} \xi&\ge \sum _{i=1}^{m} \frac{1}{2} k_{i} \Delta c_{{\rm e}i}^{2} , \end{aligned}$$
(61)
$$\begin{aligned} \zeta&\ge \sum _{i=1}^{m} \frac{1}{2} h_{i} \Delta \gamma _{i}^{2} . \end{aligned}$$
(62)

The convex quadratic inequality constraint in (61) can be rewritten equivalently as (Ben-Tal and Nemirovski 2001)

$$\xi + 1 \ge \left\| \left[ {\begin{array}{c} {\xi + 1} \\ \sqrt {2k_{1} } \Delta c_{\rm e1} \\ \vdots \\ \sqrt {2k_{m} } \Delta c_{{\rm e}m} \\ \end{array} } \right] \right\|. $$

This is a second-order cone constraint. Constraint (62) can be rewritten in the same manner.

The upshot is that problem (12) can be converted to the following SOCP problem:Footnote 1

$$\begin{aligned} \displaystyle {\text {Minimize}} {\quad } \displaystyle & \sum _{i=1}^{m} q^{(t)}_{i} \Delta c_{{\rm e}{i}} + \xi + \sum _{i=1}^{m} R^{(t)}_{i} \Delta \gamma _{i} + \zeta - {\varvec{f}}^{\top } \Delta {\varvec{u}} \\ {\mathrm {subject\;to}}\, \displaystyle & \quad \Delta c_{{\rm e}i} + \Delta c_{{\text{p}}i} = \varvec{b}_{i}^{\top } \Delta {\varvec{u}} , \quad i=1,\dots ,m, \\&\displaystyle \\&\begin{bmatrix} \Delta \gamma _{i} \\ \Delta c_{{\text{p}}i} \\ \end{bmatrix} \in{ \mathcal {L}}^{2} , \quad i=1,\dots ,m , \\ & \displaystyle \begin{bmatrix} \xi + 1 \\ \xi - 1 \\ \sqrt{2 k_{1}} \Delta c_{{\rm e}1} \\ \vdots \\ \sqrt{2 k_{m}} \Delta c_{{\rm e}m} \\ \end{bmatrix} \in{ \mathcal {L}}^{m+1} , \quad \begin{bmatrix} \zeta + 1 \\ \zeta - 1 \\ \sqrt{2 h_{1}} \Delta \gamma _{1} \\ \vdots \\ \sqrt{2 h_{m}} \Delta \gamma _{m} \\ \end{bmatrix} \in{ \mathcal {L}}^{m+1} . \end{aligned}$$

Here, \(\Delta c_{{\rm e1}},\dots ,\Delta c_{{\rm e}m}\), \(\xi \), \(\Delta \gamma _{1},\dots ,\Delta \gamma _{m}\), \(\zeta \), and \(\Delta {\varvec{u}}\) are variables to be optimized.

Appendix 2: Equivalence of (21) and (23)

As one of fundamental properties of the proximal mapping, we can show, for any \(\alpha > 0\), that \({\varvec{p}} \in {\mathbb {R}}^{m}\) satisfies

$$\begin{aligned} {\mathbf{0}}&\in \nabla _{{\varvec{p}}}g_{1}({\varvec{v}},{\varvec{p}}) + \partial g_{2}({\varvec{p}}) \end{aligned}$$
(63)

if and only if it satisfies

$$\begin{aligned} {\varvec{p}}&= {\mathbf {\mathsf{{prox}}}}_{\alpha g_{2}} ({\varvec{p}} - \alpha \nabla _{{\varvec{p}}} g_{1}({\varvec{v}},{\varvec{p}})) . \end{aligned}$$
(64)

See, e.g., Parikh and Boyd (2014). For the reader’s convenience, essentials of the proof are repeated here.

Suppose that \({\varvec{p}}\) satisfies (63). This is equivalent to

$$\begin{aligned} {\mathbf{0}}&\in \alpha \nabla _{{\varvec{p}}}g_{1}({\varvec{v}},{\varvec{p}}) + \alpha \partial g_{2}({\varvec{p}}) \nonumber \\&= \alpha \nabla _{{\varvec{p}}}g_{1}({\varvec{v}},{\varvec{p}}) - {\varvec{p}} + {\varvec{p}} + \alpha \partial g_{2}({\varvec{p}}) . \end{aligned}$$
(65)

Let \({\varvec{s}} := {\varvec{p}} - \alpha \nabla _{{\varvec{p}}}g_{1}({\varvec{v}},{\varvec{p}})\) for notational simplicity. Then (65) is rewritten as

$$\begin{aligned} {\mathbf{0}}&\in \alpha \partial g_{2}({\varvec{p}}) + ({\varvec{p}} - {\varvec{s}}) , \end{aligned}$$

which is equivalent to

$$\begin{aligned} {\varvec{p}} = \mathop{\mathrm{arg\,min}}\limits_{{\varvec{z}}} \left\{ \alpha g_{2}({\varvec{z}}) + \frac{1}{2} \Vert {\varvec{z}} - {\varvec{s}} \Vert ^{2} \right\} . \end{aligned}$$
(66)

By definition, (66) is equivalent to (64).

Appendix 3: Algorithm for piecewise-linear hardening

We begin with computation of the gradient of \(g_{1}\) defined by (58). In a manner similar to Sect. 3.3, it is convenient to define \({\varvec{e}} \in {\mathbb {R}}^{m}\) by

$$ {\varvec{e}} = B {\varvec{v}} - {\varvec{p}} - {\varvec{s}} , $$

which corresponds to the vector of incremental elastic elongation, \(\Delta \varvec{c}_{{\rm e}}\), in problem (55). Then the gradient of \(g_{1}\) can be calculated as

$$\begin{aligned} \nabla _{{\varvec{v}}}g_{1}({\varvec{v}},{\varvec{p}},{\varvec{s}})&= B^{\top } ( {\text{diag}} (\varvec{k}) {\varvec{e}} + \varvec{q}^{(t)}) - {\varvec{f}} , \\ \nabla _{{\varvec{p}}}g_{1}({\varvec{v}},{\varvec{p}},{\varvec{s}})&= {\text{diag}} (\varvec{h}_{1}) {\varvec{p}} - {\text{diag}} (\varvec{k}) {\varvec{e}} - \varvec{q}^{(t)} , \\ \nabla _{{\varvec{s}}}g_{1}({\varvec{v}},{\varvec{p}},{\varvec{s}})&= {\text{diag}} (\varvec{\eta }) {\varvec{s}} - {\text{diag}} (\varvec{k}) {\varvec{e}} - \varvec{q}^{(t)} , \end{aligned}$$

where

$$\begin{aligned} \nabla _{{\varvec{v}}}g_{1} = \frac{\partial g_{1}}{\partial {\varvec{v}}} , \quad \nabla _{{\varvec{p}}}g_{1} = \frac{\partial g_{1}}{\partial {\varvec{p}}} , \quad \nabla _{{\varvec{s}}}g_{1} = \frac{\partial g_{1}}{\partial {\varvec{s}}} . \end{aligned}$$

Moreover, the Hessian matrix of \(g_{1}\) is written as

(67)

Since \(k_{i}>0\), \(h_{i1}>0\), \(\eta _{i}>0\) \((i=1,\dots ,m)\) and B is of row full rank for a kinematically determinate truss, \(\nabla ^{2} g_{1}({\varvec{v}},{\varvec{p}},{\varvec{s}})\) is positive definite. In a manner similar to Sect. 3.3, the proximal mapping of \(\alpha g_{2}\) with \(\alpha > 0\) can be computed as

$$\begin{aligned} {\mathbf {\mathsf{{prox}}}}_{\alpha g_{2}}({\varvec{w}},{\varvec{z}}) = \left[ {\begin{array}{l} {\text{diag}} ( {\mathrm {sgn}} ({\varvec{w}})) \max \{ |{\varvec{w}}| - \alpha \varvec{R}^{(t)}, {\mathbf{0}} \} \\ {\text{diag}} ( {\mathrm {sgn}} ({\varvec{z}})) \max \{ |{\varvec{z}}| - \alpha \varvec{R}^{{\text{s}}}, {\mathbf{0}} \} \\ \end{array} } \right] \end{aligned}$$

We are now in position to describe an accelerated proximal gradient method for solving problem (57).

figure c

At step 1 of Algorithm 3, auxiliary variables \(\varvec{\varepsilon }_{l}\), \({\varvec{w}}_{l}\), and \({\varvec{s}}_{l}\) are used for convenience of computation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanno, Y. A fast first-order optimization approach to elastoplastic analysis of skeletal structures. Optim Eng 17, 861–896 (2016). https://doi.org/10.1007/s11081-016-9326-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-016-9326-1

Keywords

Navigation