Skip to main content
Log in

Accelerated Landweber methods based on co-dilated orthogonal polynomials

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this article, we introduce and study accelerated Landweber methods for linear ill-posed problems obtained by an alteration of the coefficients in the three-term recurrence relation of the ν-methods. The residual polynomials of the semi-iterative methods under consideration are linked to a family of co-dilated ultraspherical polynomials. This connection makes it possible to control the decay of the residual polynomials at the origin by means of a dilation parameter. Depending on the data, the approximation error of the ν-methods can be improved by altering this dilation parameter. The convergence order of the new semi-iterative methods turns out to be the same as the convergence order of the original ν-methods. The new algorithms are tested numerically and a simple adaptive scheme is developed in which an optimal dilation parameter is computed in every iteration step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Badkov, V.: Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval. Math. USSR, Sb. 24, 223–256 (1976)

    Article  MATH  Google Scholar 

  2. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications, New York (2001)

    Google Scholar 

  3. Brakhage, H.: On ill-posed problems and the method of conjugate gradients. In: Engl, H.W., Groetsch, C.W. (eds.) Inverse and Ill-Posed Problems, Alpine-U.S. Semin. St. Wolfgang/Austria 1986, Notes Rep. Math. Sci. Eng. vol. 4, pp. 165–175 (1987)

  4. Chihara, T.: On co-recursive orthogonal polynomials. Proc. Am. Math. Soc. 8, 899–905 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, Science Publishers, New York (1978)

    MATH  Google Scholar 

  6. Delves, L.M., Mohamed, J.L.: Computational Methods for Integral Equations. Cambridge University Press (1985)

  7. Dini, J.: Sur les formes linéaires et les polynômes orthogonaux de Laguerre-Hahn. Thése de doctorat, Univ. P. et M. Curie, Paris VI (1988)

  8. Dini, J., Maroni, P., Ronveaux, A.: Sur une perturbation de la récurrence vérifiée par une suite de polynômes orthogonaux. Port. Math. 46(3), 269–282 (1989)

    MATH  MathSciNet  Google Scholar 

  9. Egger, H.: Semiiterative regularization in Hilbert scales. SIAM. J. Numer. Anal. 44, 66–81 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of inverse problems. Kluwer Academic Publishers, Dordrecht (1996)

    Book  MATH  Google Scholar 

  11. Erb, W., Toókos, F.: Applications of the monotonicity of extremal zeros of orthogonal polynomials in interlacing and optimization problems. Appl. Math. Comput. 217(9), 4771–4780 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fischer, B.: Polynomial Based Iteration Methods for Symmetric Linear Systems. Wiley-Teubner Series in Advances in Numerical Mathematics. Wiley-Teubner (1996)

  13. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford University Press, Oxford (2004)

    Google Scholar 

  14. Groetsch, C.W.: Generalized Inverses of Linear Operators. Marcel Dekker, New York-Basel (1977)

    MATH  Google Scholar 

  15. Grosjean, C.: The weight functions, generating functions and miscellaneous properties of the sequences of orthogonal polynomials of the second kind associated with the Jacobi and the Gegenbauer polynomials. J. Comput. Appl. Math 16, 259–307 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hanke, M.: Accelerated Landweber iterations for the solution of ill-posed equations. Numer. Math. 60(3), 341–373 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hanke, M.: Conjugate gradient type methods for ill-posed problems. Longman Scientific & Technical, Harlow (1995)

    MATH  Google Scholar 

  18. Hanke, M.: Asymptotics of orthogonal polynomials and the numerical solution of ill-posed problems. Numer. Algoritm. 11(1–4), 203–214 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hanke, M., Engl, H.W.: An optimal stopping rule for the v-method for solving ill-posed problems, using Christoffel functions. J. Approx. Theory 79(1), 89–108 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hansen, P.C.: Regularization tools version 4.0 for Matlab 7.3. Numer. Algoritm. 46, 189–194 (2007)

    Article  MATH  Google Scholar 

  21. Ifantis, E.K., Siafarikas, P.D.: Perturbation of the coefficients in the recurrence relation of a class of polynomials. J. Comput. Appl. Math. 57, 163–170 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ismail, M.E.: Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  23. Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative regularization methods for nonlinear ill-posed problems. Radon Series on Computational and Applied Mathematics 6, de Gruyter, Berlin (2008)

  24. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer-Verlag, New York (1996)

    Book  MATH  Google Scholar 

  25. Landweber, L.: An iteration formula for Fredholm integral equations of the first kind. Am. J. Math. 73, 615–624 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  26. Louis, A.K.: Inverse und schlecht gestellte Probleme. Teubner-Verlag, Stuttgart (1989)

    Book  MATH  Google Scholar 

  27. Marcellan, F., Dehesa, J.S., Ronveaux, A.: On orthogonal polynomials with perturbed recurrence relations. J. Comput. Appl. Math. 30, 203–212 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mortici, C.: On Gospers formula for the Gamma function. J. Math. Inequalities 5(4), 611–614 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nemirovskii, A., Polyak, B.: Iterative methods for solving linear ill-posed problems under precise information. II. Engrg. Cybernetics 22(4), 50–56 (1984)

    MathSciNet  Google Scholar 

  30. Nevai, P.: Orthogonal Polynomials. Mem. Am. Math. Soc., vol. 213, Providence, Rhode Island (1979)

  31. Rieder, A.: Keine Probleme mit inversen Problemen. Vieweg Verlag, Wiesbaden (2003)

    Book  MATH  Google Scholar 

  32. Ronveaux, A., Belmehdi, S., Dini, J., Maroni, P.: Fourth-order differential equation for the co-modified semi-classical orthogonal polynomials. J. Comput. Appl. Math. 29(2), 225–231 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  33. Schock, E.: Semi-iterative methods for the approximate solution of ill-posed problems. Numer. Math. 50, 263–271 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  34. Slim, H.A.: On co-recursive orthogonal polynomials and their application to potential scattering. J. Math. Anal. Appl. 136, 1–19 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  35. Szegő, G.: Orthogonal Polynomials. American Mathematical Society, Providence, Rhode Island (1939)

    Google Scholar 

  36. Szwarc, R.: Orthogonal polynomials and Banach algebras. In: zu Castell, W., Filbir, F., Forster, B. (eds.) Inzell Lectures on Orthogonal Polynomials. Advances in the Theory of Special Functions and Orthogonal Polynomials, Nova Science Publishers, vol. 2, pp. 103–139. (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Erb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erb, W. Accelerated Landweber methods based on co-dilated orthogonal polynomials. Numer Algor 68, 229–260 (2015). https://doi.org/10.1007/s11075-014-9842-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9842-z

Keywords

Mathematics Subject Classification (2010)

Navigation