Skip to main content
Log in

Solutions of nonlinear thickness-shear vibrations of an infinite isotropic plate with the homotopy analysis method

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

As a preliminary attempt for the study on nonlinear vibrations of a finite crystal plate, the thickness-shear mode of an infinite and isotropic plate is investigated. By including nonlinear constitutive relations and strain components, we have established nonlinear equations of thickness-shear vibrations. Through further assuming the mode shape of linear vibrations, we utilized the standard Galerkin approximation to obtain a nonlinear ordinary differential equation depending only on time. We solved this nonlinear equation and obtained its amplitude–frequency relation by the homotopy analysis method (HAM). The accuracy of the present results is shown by comparison between our results and the perturbation method. Numerical results show that the homotopy analysis solutions can be adjusted to improve the accuracy. These equations and results are useful in verifying the available methods and improving our further solution strategy for the coupled nonlinear vibrations of finite piezoelectric plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mindlin, R.D.: Thickness-shear and flexural vibrations of crystal plates. J. Appl. Phys. 22(3), 316–323 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  2. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum, New York (1969)

    Google Scholar 

  3. Yang, J.S.: Analysis of ceramic thickness shear piezoelectric gyroscopes. J. Acoust. Soc. Am. 102(6), 3542–3548 (1997)

    Article  Google Scholar 

  4. Reed, C.E., Kanazawa, K.K., Kaufman, J.H.: Physical description of a viscoelastically loaded AT-cut quartz resonator. J. Appl. Phys. 68(5), 1993–2001 (1990)

    Article  Google Scholar 

  5. Mindlin, R.D. (Yang, J.S., editor): An Introduction to the Mathematical Theory of Vibrations of Elastic Plates. World Scientific, Singapore (2006)

    Chapter  Google Scholar 

  6. Wang, J., Yang, J.S.: Higher-order theories of piezoelectric plates and applications. Appl. Mech. Rev. 53(4), 87–99 (2000)

    Article  Google Scholar 

  7. Wang, J., Zhao, W.H.: The determination of the optimal length of crystal blanks in quartz crystal resonators. IEEE Trans. Ultras. Ferroelectr. Freq. Control 52(10), 2023–2030 (2005)

    Article  Google Scholar 

  8. Wang, J., Yong, Y.-K., Imai, T.: Finite element analysis of the piezoelectric vibrations of quartz plate resonators with higher-order plate theory. Int. J. Solids Struct. 36(13), 2303–2319 (1999)

    Article  MATH  Google Scholar 

  9. Lee, P.C.Y., Yong, Y.-K.: Frequency–temperature behavior of thickness vibrations of double rotated quartz plates affected by plate dimensions and orientations. J. Appl. Phys. 60(7), 2327–2342 (1986)

    Article  Google Scholar 

  10. Yang, J.S.: Two-dimensional equations for electroelastic plates with relatively large in-plane shear deformation and nonlinear mode coupling in resonant piezoelectric devices. Acta Mech. 196(1–2), 103–111 (2008)

    Article  MATH  Google Scholar 

  11. Wang, J., Wu, R.X., Du, J.K., Huang, D.J.: Nonlinear Mindlin plate equations for the thickness-shear vibrations of crystal plates. In: Proceeding of the 2008 Symposium on Piezoelectricity, Acoustic Waves and Device Applications, pp. 87–92 (2008)

  12. Yang, J. S., Guo, S.H., Effects of nonlinear elastic constants on electromechanical coupling factors. IEEE Trans. Ultras. Ferroelectr. Freq. Control 52(12), 2303–2305 (2005)

    Article  Google Scholar 

  13. Yang, Z.T., Hu, Y.T., Wang, J., Yang, J.S.: Nonlinear coupling between thickness-shear and thickness-stretch modes in a rotated Y-cut quartz resonator. IEEE Trans. Ultras. Ferroelectr. Freq. Control 56(1), 220–224 (2009)

    Article  Google Scholar 

  14. Wang, J., Wu, R. X., Yong, Y.-K., Du, J. K., et al.: An analysis of vibrations of quartz crystal plates with nonlinear Mindlin plate equations. In: Proceeding of the Joint Conference of 2009 IEEE International Frequency Control Symposium and the European Frequency and Time Forum, pp. 450–454 (2009)

  15. Patel, M.S., Yong, Y.-K., Tanaka, M.: Drive level dependency in quartz resonators. Int. J. Solids Struct. 46(9), 1856–1871 (2009)

    Article  MATH  Google Scholar 

  16. Yang, J.S.: Equations for the extension and flexure of electroelastic plates under strong electric fields. Int. J. Solids Struct. 36, 3171–3192 (1999)

    Article  MATH  Google Scholar 

  17. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman & Hall/CRC, Boca Raton (2003)

    Book  Google Scholar 

  18. Wang, J., Chen, J.K., Liao, S.J.: An explicit solution of the large deformation of a cantilever beam under point load at the free tip. J. Comput. Appl. Math. 202(2), 320–330 (2008)

    Article  MathSciNet  Google Scholar 

  19. Gao, L.M., Wang, J., Zhong, Z., Du, J.K.: An analysis of surface acoustic wave propagation in functionally graded plates with homotopy analysis method. Acta Mech. 208, 249–258 (2009)

    Article  MATH  Google Scholar 

  20. Xu, H., Cang, J.: Analysis of a time fractional wave-like equation with the homotopy analysis method. Phys. Lett., A 372, 1250–1255 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Abbasbandy, S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett., A 360, 109–113 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wu, Y.Y., Cheung, K.F.: Homotopy solution for nonlinear differential equations in wave propagation problems. Wave Motion 46, 1–14 (2009)

    Article  MathSciNet  Google Scholar 

  23. Hiki, Y., Higher order elastic constants of solids. Ann. Rev. Mat. Sci. 11, 51–73 (1981)

    Article  Google Scholar 

  24. Meurer, T., Qu, J., Jacobs, L.J.: Wave propagation in nonlinear and hysteretic media—a numerical study. Int. J. Solids Struct. 39, 5589–5614 (2002)

    Article  Google Scholar 

  25. Abd-alla, A., Maugin, G.A.: Nonlinear phenomena in magnetostrictive elastic resonators. Int. J. Eng. Sci. 27(12), 1613–1619 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wang, J., Wu, R.X., Du, J.K.: The nonlinear thickness-shear vibrations of an infinite and isotropic elastic plate. In: Proceedings of the Joint Conference of the 2009 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications and 2009 China Symposium on Frequency Control Technology, pp. 365–369 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, R., Wang, J., Du, J. et al. Solutions of nonlinear thickness-shear vibrations of an infinite isotropic plate with the homotopy analysis method. Numer Algor 59, 213–226 (2012). https://doi.org/10.1007/s11075-011-9485-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-011-9485-2

Keywords

Navigation