Skip to main content
Log in

Stability verification for monotone systems using homotopy algorithms

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A monotone self-mapping of the nonnegative orthant induces a monotone discrete-time dynamical system which evolves on the same orthant. If with respect to this system the origin is attractive then there must exist points whose image under the monotone map is strictly smaller than the original point, in the component-wise partial ordering. Here it is shown how such points can be found numerically, leading to a recipe to compute order intervals that are contained in the region of attraction and where the monotone map acts essentially as a contraction. An important application is the numerical verification of so-called generalized small-gain conditions that appear in the stability theory of large-scale systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aeyels, D., De Leenheer, P.: Extension of the Perron–Frobenius theorem to homogeneous systems. SIAM J. Control Optim. 41(2), 563–582 (electronic) (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allgower, E., Georg, K.: Simplicial and continuation methods for approximating fixed points and solutions to systems of equations. SIAM Rev. 22, 28–85 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allgower, E.L., Georg, K.: Numerical continuation methods. In: Springer Series in Computational Mathematics, vol. 13. Springer, Berlin (1990)

    Google Scholar 

  4. Allgower, E.L., Georg, K.: Numerical path following. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. V, pp. 3–207. North-Holland, Amsterdam (1997)

    Google Scholar 

  5. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for Numerical Algebraic Geometry (2006). Available at http://www.nd.edu/~sommese/bertini

  6. Eaves, B.C.: Homotopies for computation of fixed points. Math. Program. 3, 1–22 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feoktistova, V., Matveev, A.: Dynamic interactive stabilization of the switching Kumar–Seidman system. Vestnik St. Petersburg Univ. Math. 42(3), 226–234 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao, K., Lin, Y.: On equivalent notions of input-to-state stability for nonlinear discrete time systems. In: Proc. of the IASTED Int. Conf. on Control and Applications, pp. 81–87 (2000)

  9. Jiang, Z.-P., Wang, Y.: Input-to-state stability for discrete-time nonlinear systems. Automatica J. IFAC 37(6), 857–869 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karafyllis, I., Jiang, Z.-P.: A vector small-gain theorem for general nonlinear control systems. arXiv:0904.0755v1 [math.OC] (2009)

  11. Knaster, B., Kuratowski, C., Mazurkiewicz, S.: Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe. Fundamenta 14, 132–137 (1929)

    MATH  Google Scholar 

  12. Krause, U.: Concave Perron–Frobenius theory and applications. Nonlinear Anal. 47(3), 1457–1466 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lassonde, M.: Sur le principe KKM. C.R. Acad. Sci. Paris Sér. I Math. 310(7), 573–576 (1990)

    MathSciNet  MATH  Google Scholar 

  14. Lee, T.L., Li, T.Y., Tsai, C.H.: HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method. Computing 83(2–3), 109–133 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Raimondo, D.M., Magni, L., Scattolini, R.: Decentralized MPC of nonlinear systems: an input-to-state stability approach. Int. J. Robust Nonlinear Control 17(17), 1651–1667 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rüffer, B.S.: Monotone inequalities, dynamical systems, and paths in the positive orthant of Euclidean n-space. Positivity 14(2), 257–283 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rüffer, B.S.: Small-gain conditions and the comparison principle. IEEE Trans. Automat. Contr. 55(7), 1732–1736 (2010)

    Article  Google Scholar 

  18. Rüffer, B.S., Dashkovskiy, S.N.: Local ISS of large-scale interconnections and estimates for stability regions. Syst. Control Lett. 59(3–4), 241–247 (2010)

    MATH  Google Scholar 

  19. Tanner, H.G., Pappas, G.J., Kumar, V.: Leader-to-formation stability. IEEE Trans. Robot. Autom. 20(3), 443–455 (2004)

    Article  Google Scholar 

  20. Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25, 251–276 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn S. Rüffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rüffer, B.S., Wirth, F.R. Stability verification for monotone systems using homotopy algorithms. Numer Algor 58, 529–543 (2011). https://doi.org/10.1007/s11075-011-9468-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-011-9468-3

Keywords

Mathematics Subject Classifications (2010)

Navigation