Skip to main content
Log in

The nearness problems for symmetric centrosymmetric with a special submatrix constraint

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We say that \(X=[x_{ij}]_{i,j=1}^n\) is symmetric centrosymmetric if x ij  = x ji and x n − j + 1,n − i + 1, 1 ≤ i,j ≤ n. In this paper we present an efficient algorithm for minimizing ||AXA T − B|| where ||·|| is the Frobenius norm, A ∈ ℝm×n, B ∈ ℝm×m and X ∈ ℝn×n is symmetric centrosymmetric with a specified central submatrix [x ij ]p ≤ i,j ≤ n − p. Our algorithm produces a suitable X such that AXA T = B in finitely many steps, if such an X exists. We show that the algorithm is stable any case, and we give results of numerical experiments that support this claim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, Z.J.: The inverse eigenproblem of centrosymmetric matrices with a submatrix constraint and its approximation. SIAM J. Matrix Anal. Appl. 26, 1100–1114 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baruch, M.: Optimization procedure to correct stiffness and flexibility matrices using vibration tests. AIAA J. 16, 1208–1210 (1978)

    Article  MATH  Google Scholar 

  3. Berman, A., Nagy, E.J.: Improvement of a large analytical model using test data. AIAA J. 21, 1168–1173 (1983)

    Article  Google Scholar 

  4. Baksalary, J.K.: Nonnegative definite and positive solutions to the matrix equation AXA * = B. Linear Multilinear Algebra 16, 133–139 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cantoni, A., Butler, P.: Eigenvalues and eigenvectors of symmetric centrosymmetric matrices. Linear Algebra Appl. 13, 275–288 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cantoni, A., Butler, P.: Properties of the eigenvectors of persymmetric matrices with applications to communication theory. IEEE Trans. Commun. COM 24(8), 804–809 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dai, H., Lancaster, P.: Linear matrix equations from an inverse problem of vibration theory. Linear Algebra Appl. 246, 31–47 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Datta, L., Morgera, S.: On the reducibility of centrosymmetric matrices—applications in engineering problems. Circuits Syst. Signal Process. 8, 71–96 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Friswell, M.I., Mottershead, J.E.: Finite Element Model Updating in Structural Dynamics. Kluwer Academic, Dordrecht (1995)

    MATH  Google Scholar 

  10. Gersho, A.: Adaptive equalization of highly dispersive channels for data transmission. BSTJ 48, 55–70 (1969)

    MATH  Google Scholar 

  11. Hochstadt, H.: On the construction of a Jacobi matrix from mixed given data. Linear Algebra Appl. 28, 113–115 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)

    MATH  Google Scholar 

  13. Link, M.: Identification and correction of errors in analytical models using test data-theoretical and practical bounds. In: Proceedings of the Eighth International Modal Analysis Conference, pp. 570–578 (1990)

  14. Luber, W., Lotze, A.: Application of sensitivity methods for error localization in finite element systems. In: Proceedings of the Eighth International Modal Analysis Conference, pp. 598–604 (1990)

  15. O’Callahan, J.C., Chou, C.-M.: Localization of model errors in optimized mass and stiffness matrices using modal test data. Int. J. Anal. Exp. Anal. 4, 8–14 (1989)

    Google Scholar 

  16. Peng, Z.Y., Hu, X.Y., Zhang, L.: The inverse problem of symmetric centrosymmetric matrices with a submatrix constraint. Numer. Linear Algebra Appl. 11, 59–73 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Peng, Z.Y., Hu, X.Y.: Constructing Jacobi matrix with prescribed ordered defective eigenpairs and a principal submatrix. J. Comput. Appl. Math. 175, 321–333 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Liao, A.P., Lei, Y.: Least-squares solutions of matrix inverse problem for bi-symmetric matrices with a submatrix constraint. Numer. Linear Algebra Appl. 14, 425–444 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lei, Y., Liao, A.P.: A minimal residual algorithm for the inconsistent matrix equation AXB = C over symmetric matrices. Appl. Math. Comput. 188, 499–513 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lancaster, P.: Explicit solutions of linear matrix equation. SIAM Rev. 72, 544–566 (1970)

    Article  MathSciNet  Google Scholar 

  21. Rojo, O., Rojo, H.: Some results on symmetric circulant matrices and on symmetric centrosymmetric matrices. Linear Algebra Appl. 392, 211–233 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Tao, D., Yasuda, M.: A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric centroskew matrices. SIAM J. Matrix Anal. Appl. 23, 885–895 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Weaver, J.: Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors. Am. Math. Mon. 92, 711–717, (1985)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wang, Q.W.: Symmetric centrosymmetric and centrosymmetric solutions to systems of real quaternion matrix equations. Comput. Math. Appl. 49, 641–650 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wang, R.S.: Functwnal Analysis and Optimization Theory. Beljing Unlv of Aeronautics Astronautics Press, Beijing (2003)

    Google Scholar 

  26. Wei, F.S.: Stiffness matrix correction from incomplete test data. AIAA J. 18, 1274–1275 (1980)

    Article  MATH  Google Scholar 

  27. Wei, F.S.: Mass and stiffness interaction effects in analytical model modification. AIAA J. 28, 1686–1688 (1990)

    Article  Google Scholar 

  28. Yuan, Y.X., Dai, H.: Inverse problems for symmetric matrices with a submatrix constraint. Appl. Numer. Math. 57, 646–656 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yuan, Y.X., Dai, H.: The nearness problems for symmetric matrix with a submatrix constraint, J. Comput. Appl. Math. 213, 224–231 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhang, O., Zerva, A., Zhang, D.W.: Stiffness matrix adjustment using incomplete measured modes. AIAA J. 35, 917–919 (1997)

    Article  MATH  Google Scholar 

  31. Zhao, L.J., Hu, X.Y., Zhang, L.: Least squares solutions to AX = B for symmetric centrosymmetric matrices under a central principal submatrix constraint and the optimal approximation. Linear Algebra Appl. 428, 871–880 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiao-Fen Li.

Additional information

Research supported by the National Natural Science Foundation of China (Grant No. 10571047) and Doctorate Foundation of the Ministry of Education of China (Grant No. 20060532014).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JF., Hu, XY. & Zhang, L. The nearness problems for symmetric centrosymmetric with a special submatrix constraint. Numer Algor 55, 39–57 (2010). https://doi.org/10.1007/s11075-009-9356-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-009-9356-2

Keywords

Mathematics Subject Classifications (2000)

Navigation