Skip to main content
Log in

Dynamic modeling and experimental verification of clamp–pipeline system with soft nonlinearity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The metal rubber clamp, serving as a crucial supporting component, often generates non-linear forces and brings complex dynamics to the pipeline system. However, the nonlinearity of metal rubber clamp in pipeline system has been rarely incorporated in open research. Therefore, a novel nonlinear clamp model with four degrees of freedom is proposed based on the genetic algorithm and the finite element method. The nonlinear parameters are identified by the genetic algorithm, where the objective function is defined as the error between experiment and simulation. The proposed nonlinear clamp–pipeline model is verified through modal tests and vibration response experiments conducted under various boundary conditions. Furthermore, the pipeline response tests of different clamp types are conducted to evaluate the supporting performance. The results show that when the excitation amplitude increases from 0.5 g to 3 g, the resonance frequency offsets of the three clamp types are different from each other. The frequency offset of the metal rubber clamp is 8.2 Hz, the copper clamp has a frequency offset of 5.5 Hz, and the clamp without metal rubber exhibits a frequency offset of 5 Hz. The soft nonlinearity of the metal rubber clamp is most obvious, followed by the copper clamp. The clamp without metal rubber exhibits the weakest level of soft nonlinearity. The numerical results are basically consistent with the experimental data. The proposed model effectively simulates the nonlinear effects of the pipeline system under different clamps, enabling more accurate prediction of vibration responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Lin, J.Z., Zhao, Y.L., Zhu, Q.Y., et al.: Nonlinear characteristic of clamp loosing in aero-engine pipeline system. IEEE Access. 9, 64076–64084 (2021)

    Google Scholar 

  2. Gao, P.X., Zhai, J.Y., Yan, Y.Y., et al.: A model reduction approach for the vibration analysis of hydraulic pipeline system in aircraft. Aerosp. Sci. Technol. 49, 144–153 (2016)

    Google Scholar 

  3. Guo, X.M., Ma, H., Zhang, X.F., et al.: Uncertain frequency responses of clamp–pipeline systems using an interval-based method. IEEE Access. 99, 1–1 (2020)

    Google Scholar 

  4. Zhang, T., Ouyang, H.J., Zhang, Y.O., et al.: Nonlinear dynamics of straight fluid-conveying pipes with general boundary conditions and additional springs and masses. Appl. Math. Model. 40(17–18), 7880–7900 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Zhang, T., Ouyang, H.J., Zhao, C., et al.: Vibration analysis of a complex fluid-conveying piping system with general boundary conditions using the receptance method. Int. J. Press. Vessels Pip. 166, S0308016118300851 (2018)

    Google Scholar 

  6. Liu, G.M., Li, Y.H.: Vibration analysis of liquid-filled pipelines with elastic constraints. J. Sound Vib. 330(13), 3166–3181 (2011)

    Google Scholar 

  7. Lesmez, M.W., Wiggert, D.C., Hatfield, F.: Modal analysis of vibrations in liquid-filled piping systems. J. Fluids Eng. 112(3), 311–318 (1990)

    Google Scholar 

  8. Guo, X.M., Xiao, C.L., Ma, H., et al.: An improved frequency modeling and solution for parallel liquid-filled pipes considering both fluid-structure interaction and structural coupling. Appl. Math. Mech. (English Edition). 43(8), 1269–1288 (2022)

    MathSciNet  MATH  Google Scholar 

  9. Xu, J.D., Guo, B.T., Zhu, Z.G., et al.: Vibration characteristics of metal rubber materials. J. Aerosp. Power. 19(5), 4 (2004)

    Google Scholar 

  10. Li, Z.Y., Wang, J.J., Qiu, M.X.: Dynamic characteristics of fluid-conveying pipes with piecewise linear support. Int. J. Struct. Stab. Dyn. 16(6), 1550025 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Chai, Q.D., Zeng, J., Ma, H., et al.: A dynamic modeling approach for nonlinear vibration analysis of the L-type pipeline system with clamps. Chin. J. Aeronaut. 33(12), 3253–3265 (2020)

    Google Scholar 

  12. Li, X., Li, W.H., Shi, J., et al.: Pipelines vibration analysis and control based on clamps’ locations optimization of multi-pump system. Chin. J. Aeronaut. 35(6), 15 (2022)

    Google Scholar 

  13. Ding, H., Chen, L.Q., Yang, S.P.: Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load. J. Sound Vib. 331(10), 2426–2442 (2012)

    Google Scholar 

  14. Yang, T.Z., Liu, T., Tang, Y., et al.: Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear Dyn. 97(3), 1937–1944 (2019)

    Google Scholar 

  15. Ding, H., Zhu, M.H., Chen, L.Q.: Nonlinear vibration isolation of a viscoelastic beam. Nonlinear Dyn. 92(2), 325–349 (2018)

    Google Scholar 

  16. Ye, S.Q., Mao, X.Y., Ding, H., et al.: Nonlinear vibrations of a slightly curved beam with nonlinear boundary conditions. Int. J. Mech. Sci. 168, 105294 (2019)

    Google Scholar 

  17. Zhang, Y.W., Hou, S., Zhang, Z., et al.: Nonlinear vibration absorption of laminated composite beams in complex environment. Nonlinear Dyn. 99(4), 2605–2622 (2020)

    Google Scholar 

  18. Ulanov, A.M., Bezborodov, S.A.: Calculation method of pipeline vibration with damping supports made of the MR material. Proc. Eng. 150, 101–106 (2016)

    Google Scholar 

  19. Wu, K., Bai, H., Xue, X., et al.: Energy dissipation characteristics and dynamic modeling of the coated damping structure for metal rubber of bellows. Metals. 8(7), 562 (2018)

    Google Scholar 

  20. Jiang, F., Ding, Z.Y., Wu, Y.W., et al.: Energy dissipation characteristics and parameter identification of symmetrically coated damping structure of pipelines under different temperature environment. Symmetry. 12(8), 1283 (2020)

    Google Scholar 

  21. Wang, G.Y., Zheng, G.T., Han, C.: Dynamic modeling method of metallic rubbers in frequency domain. J. Astronaut. 02, 499–504 (2008)

    Google Scholar 

  22. Ren, Z., Shen, L., Bai, H., et al.: Constitutive model of disordered grid interpenetrating structure of flexible microporous metal rubber. Mech. Syst. Signal Process. 154, 107567 (2021)

    Google Scholar 

  23. Liu, X.F., Sun, W., Liu, H., et al.: Semi-analytical modeling and analysis of nonlinear vibration of bolted thin plate based on virtual material method. Nonlinear Dyn. 108(2), 1247–1268 (2022)

    Google Scholar 

  24. Liu, X.F., Sun, W., Liu, H., et al.: Nonlinear vibration modeling and analysis of bolted thin plate based on non-uniformly distributed complex spring elements. J. Sound Vib. 527, 116883 (2022)

    Google Scholar 

  25. Tang, B., Brennan, M.J., Gatti, G.: Use of the dynamic stiffness method to interpret experimental data from a nonlinear system. J. Sound Vib. 421, 91–110 (2018)

    Google Scholar 

  26. Brennan, M.J., Kovacic, I., Carrella, A., et al.: On the jump-up and jump-down frequencies of the Duffing oscillator. J. Sound Vib. 318(4–5), 1250–1261 (2008)

    Google Scholar 

  27. Chen, W.J., Cao, Y.M., Guo, X.M., et al.: Nonlinear vibration analysis of pipeline considering the effects of soft nonlinear clamp. Appl. Math. Mech. (English Edition). 43(10), 1555–1568 (2022)

    MathSciNet  MATH  Google Scholar 

  28. Franulović, M., Basan, R., Prebil, I.: Genetic algorithm in material model parameters’ identification for low-cycle fatigue. Comput. Mater. Sci. 45(2), 505–510 (2009)

    Google Scholar 

  29. Guan, X.Y., Xie, S.J., Chen, G., et al.: Modal parameter identification by adaptive parameter domain with multiple genetic algorithms. J. Mech. Sci. Technol. 34(12), 4965–4980 (2020)

    Google Scholar 

  30. Kwok, N.M., Ha, Q.P., Nguyen, M.T., et al.: Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA. ISA Trans. 46(2), 167 (2007)

    Google Scholar 

  31. Gao, Y., Sun, W.: Inverse identification of the mechanical parameters of a pipeline hoop and analysis of the effect of preload. Front. Mech. Eng. 14(3), 358–368 (2019)

    Google Scholar 

  32. Chai, Q.D., Fu, Q., Ma, H., et al.: Modeling and dynamic characteristics analysis for a pipeline system with single double-clamp. J. Vib. Shock. 39(19), 114–120 (2020)

    Google Scholar 

  33. Lv, J.H., Zang, C.P., et al.: Nonlinear equivalent method for clamp based on test data. J. Aerosp. Power. 34(09), 1944–1952 (2019). ((in Chinese))

    Google Scholar 

  34. Uesaka, T., Nakamura, N., Suzuki, T.: Parameter identification for nonlinear structural model using modal iterative error correction method. Eng. Struct. 232(2386), 111805 (2021)

    Google Scholar 

  35. Paimushin, V.N., Firsov, V.A., Gyunal, I., et al.: Identification of the elastic and damping characteristics of soft materials based on the analysis of damped flexural vibrations of test specimens. Mech. Compos. Mater. 52, 435–454 (2016)

    MATH  Google Scholar 

  36. Dou, B., Ding, H., Mao, X.Y., et al.: Modeling and parametric studies of retaining clips on pipes. Mech. Syst. Signal Process. 186, 109912 (2023)

    Google Scholar 

  37. Wang, Y., Wang, L., Ni, Q., et al.: Non-planar responses of cantilevered pipes conveying fluid with intermediate motion constraints. Nonlinear Dyn. 93(2), 505–524 (2018)

    Google Scholar 

  38. Liu, M., Wang, Y., Qin, T., et al.: Nonlinear dynamics of cross-flow tubes subjected to initial axial load and distributed impacting constraints. Shock. Vib. 2021, 2359090 (2021)

    Google Scholar 

  39. Wang, Y., Ni, Q., Wang, L., et al.: Nonlinear impacting oscillations of pipe conveying pulsating fluid subjected to distributed motion constraints. J. Mech. Mater. Struct. 12(5), 563–578 (2017)

    MathSciNet  Google Scholar 

  40. Ma, Y., Zhang, Q., Wang, Y., et al.: Topology and mechanics of metal rubber via X-ray tomography. Mater. Des. 181, 108067 (2019)

    Google Scholar 

  41. Yuan, J.R., Ding, H.: Dynamic model of curved pipe conveying fluid based on the absolute nodal coordinate formulation. Int. J. Mech. Sci. 232, 107625 (2022)

    Google Scholar 

  42. Yuan, J.R., Ding, H.: An out-of-plane vibration model for in-plane curved pipes conveying fluid. Ocean Eng. 271, 113747 (2023)

    Google Scholar 

  43. Wang, X.F., Zhang, Q.L., Yang, Q.S.: A new finite element of spatial thin-walled beams. Appl. Math. Mech. 31(9), 1141–1152 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Wang, X.F., Yang, Q.S., Zhang, Q.L.: A new beam element for analyzing geometrical and physical nonlinearity. Acta. Mech. Sin. 26(4), 605–615 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Cao, Y.M., Chai, Q.D., Guo, X.M., et al.: Comparative study on two finite element models for multi-clamp pipeline system. J. Mech. Sci. Technol. 36(3), 1157–1169 (2022)

    Google Scholar 

  46. Cao, Y.M., Guo, X.M., Ma, H., et al.: Dynamic modelling and natural characteristics analysis of fluid conveying pipeline with connecting hose. Mech. Syst. Signal Process. 193, 110244 (2023)

    Google Scholar 

  47. Shen, G., Li, M., Xue, X.: Damping energy dissipation and parameter identification of the bellows structure covered with elastic-porous metal rubber. Shock. Vib. 2021, 8813099 (2021)

    Google Scholar 

  48. Liao, X., Zhang, J., Xu, X.: Analytical model of bolted joint structure and its nonlinear dynamic characteristics in transient excitation. Shock. Vib. 2016(7), 1–11 (2016)

    Google Scholar 

  49. Bai, Z.F., Jiang, X., Zhao, Y.: Investigation of dynamic characteristics of revolute-jointed beam using cubic nonlinearity. Mech. Based Des. Struct. Mach. 50(10), 3578–3595 (2020)

    Google Scholar 

  50. Zheng, X., Wang, W., Wu, Y., et al.: Study of the dynamic model and vibration performance of pot-shaped metal rubber. Materials. 15(17), 5878 (2022)

    Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation (Grant No. 11972112), the Fundamental Research Funds for the Central Universities (Grant Nos. N2103024), the National Science and Technology Major Project (Grant No. J2019-I-0008-0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Chen, W., Ma, H. et al. Dynamic modeling and experimental verification of clamp–pipeline system with soft nonlinearity. Nonlinear Dyn 111, 17725–17748 (2023). https://doi.org/10.1007/s11071-023-08814-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08814-y

Keywords

Navigation