Skip to main content
Log in

Effect of temperature on synchronization of scale-free neuronal network

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The ambient temperature and the time delay of signal transmission are very important influences on the synchronization behavior of neuronal networks. In this paper, a neuronal network with the power-law degree distribution is constructed using a Hodgkin–Huxley model containing a temperature modulation factor and noise, and neurons at each node of the scale-free network are interconnected by electrical and chemical synapses, respectively. In scale-free networks with different ambient temperatures, the absence of time delay causes the synchronization of networks connected by both synaptic types to increase with coupling strength at lower temperatures, while the opposite is shown for networks connected by chemical synapses at higher temperatures. Networks connected by both synaptic types show multiple synchronization transitions when there is the time delay. Surprisingly, there is a temperature threshold for scale-free networks connected by chemical synapses, beyond which synchronization becomes very poor. By introducing the coefficient of variation and the mean inter-spikes intervals, it is found that the emergence of temperature thresholds for networks connected by chemical synapses is caused by a further increase in the difference in firing frequency of neurons due to increasing temperature. Finally, the generality of the results and mechanisms studied in scale-free networks is verified by investigating the effects of different network scales on synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  2. Lu, L., Jia, Y., Kirunda, J.B., et al.: Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network. Nonlinear Dyn. 95, 1673–1686 (2018)

    Google Scholar 

  3. He, Z., Yao, C., Liu, S., et al.: Transmission of pacemaker signal in a small world neuronal networks: temperature effects. Nonlinear Dyn. 106, 2547–2557 (2021)

    Google Scholar 

  4. Zhou, X., Xu, Y., Wang, G., et al.: Ionic channel blockage in stochastic Hodgkin-Huxley neuronal model driven by multiple oscillatory signals. Cogn. Neurodyn. 14, 569–578 (2020)

    Google Scholar 

  5. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. Ser. B 221, 87–102 (1984)

    Google Scholar 

  6. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Google Scholar 

  7. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)

    Google Scholar 

  8. Nagumo, J., Sato, S.: On a response characteristic of a mathematical neuron model. Kybernetik 10, 155–164 (1972)

    MATH  Google Scholar 

  9. Wang, G., Yang, L., Zhan, X., et al.: Chaotic resonance in Izhikevich neural network motifs under electromagnetic induction. Nonlinear Dyn. 107, 3945–3962 (2022)

    Google Scholar 

  10. Sathiyadevi, K., Premraj, D., Banerjee, T., et al.: Aging transition under discrete time-dependent coupling: restoring rhythmicity from aging. Chaos Soliton Fract. 157, 111944 (2022)

    MATH  Google Scholar 

  11. Yu, D., Wang, G., Li, T., et al.: Filtering properties of Hodgkin-Huxley neuron on different time-scale signals. Commun. Nonlinear. Sci. (2022). https://doi.org/10.1016/j.cnsns.2022.106894

    Article  MATH  Google Scholar 

  12. Ding, Q.M., Jia, Y.: Effects of temperature and ion channel blocks on propagation of action potential in myelinated axons. Chaos 31, 053102 (2021)

    MathSciNet  Google Scholar 

  13. Pereda, A.E.: Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15, 250–263 (2014)

    Google Scholar 

  14. Ge, M., Lu, L., Xu, Y., et al.: Vibrational mono-/bi-resonance and wave propagation in FitzHugh–Nagumo neural systems under electromagnetic induction. Chaos Soliton Fract. 133, 109645 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Pouzat, C., Marty, A.: Autaptic inhibitory currents recorded from interneurones in rat cerebellar slices. J. Physiol. 509, 777–783 (1998)

    Google Scholar 

  16. Bard Ermentrout, G., Terman, D.H.: Mathematical Foundations of Neuroscience. Springer, Berlin (2010)

    MATH  Google Scholar 

  17. Goto, A., Bota, A., Miya, K., et al.: Stepwise synaptic plasticity event drive the early phase of memory consolidation. Science 374, 857–863 (2021)

    Google Scholar 

  18. Yin, L., Zheng, R., Ke, W., et al.: Autapses enchance bursting and coincidence detection in neocortical pyramidal cells. Nat. Commun. 9, 4890 (2018)

    Google Scholar 

  19. Andreev, A.V., Frolov, N.S., Pisarchik, A.N., et al.: Chimera state in complex networks of bistable Hodgkin-Huxley neurons. Phys. Rev. E 100, 022224 (2019)

    Google Scholar 

  20. Hay, E., Hill, S., Schürmann, F., et al.: Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS. Comput. Biol. 7, e1002107 (2011)

    Google Scholar 

  21. Bono, J., Clopath, C.: Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level. Nat. Commun. 8, 706 (2017)

    Google Scholar 

  22. Fan, Y., Wei, X., Yi, G., et al.: Effects of hyperpolarization-active cation current (Ih) on sublinear dendritic integration under applied electric fields. Nonlinear Dyn. 108, 4335–4356 (2022)

    Google Scholar 

  23. Hussain, I., Jafari, S., Ghosh, D., et al.: Synchronization and chimeras in a network of photosensitive FitzHugh–Nagumo neurons. Nonlinear Dyn. 104, 2711–2721 (2021)

    Google Scholar 

  24. Xu, Y., Jia, Y., Ge, M., et al.: Effects of ion channel blocks on electrical activity of stochastic Hodgkin-Huxley neural network under electromagnetic induction. Neurocomputing 283, 196–204 (2018)

    Google Scholar 

  25. Parastesh, F., Azarnoush, H., Jafari, S., et al.: Synchronizability of two neurons with switching in the coupling. Appl. Math. Comput. 350, 217–223 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Wang, G., Yu, D., Ding, Q., et al.: Effects of electric field on multiple vibrational resonances in Hindmarsh-Rose neuronal systems. Chaos Soliton Fract. 150, 111210 (2021)

    MathSciNet  MATH  Google Scholar 

  27. Wu, Y., Wang, B., Zhang, X., et al.: Spiral wave of a two-layer coupling neuronal network with multi-area channels. Int. J. Mod. Phys. B 33, 1950354 (2019)

    MathSciNet  Google Scholar 

  28. Andreev, A.V., Maksimenko, V.A., Pisarchik, A.N., et al.: Synchronization of interacted spiking neuronal networks with inhibitory coupling. Chaos Soliton Fract. 146, 110812 (2021)

    MathSciNet  Google Scholar 

  29. Sathiyadevi, K., Chandrasekar, V.K., Senthilkumar, D.V.: Inhomogeneous to homogeneous dynamical states through symmetry breaking dynamics. Nonlinear Dyn. 98, 327–340 (2019)

    MATH  Google Scholar 

  30. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    MathSciNet  MATH  Google Scholar 

  31. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    MATH  Google Scholar 

  32. Wainrib, G., Touboul, J.: Topological and dynamical complexity of random neural networks. Phys. Rev. Lett. 110, 118101 (2012)

    Google Scholar 

  33. Guo, L., Zhang, S., Wu, Y., et al.: Complex spiking neural networks with synaptic time-delay based on anti-interference function. Cogn. Neurodyn. (2022). https://doi.org/10.1007/s11571-022-09803-4

    Article  Google Scholar 

  34. Holstein, D., Goltsev, A.V., Mendes, J.: Impact of noise and damage on collective dynamics of scale-free neuronal networks. Phys. Rev. E 87, 032717 (2013)

    Google Scholar 

  35. Ribeiro, T.L., Chialvo, D.R., Plenz, D.: Scale-free dynamics in animal groups and brain networks. Front. Syst. Neurosci. 14, 591210 (2021)

    Google Scholar 

  36. Wang, Q., Perc, M., Duan, Z., et al.: Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys. Rev. E 80, 026206 (2009)

    Google Scholar 

  37. Hao, Y., Gong, Y., Wang, L., et al.: Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling. Chaos Soliton Fract. 44, 260–268 (2011)

    MathSciNet  Google Scholar 

  38. Kundu, S., Bera, B.K., Ghosh, D., et al.: Chimera patterns in three-dimensional locally coupled systems. Phys. Rev. E 99, 022204 (2019)

    Google Scholar 

  39. Yu, D., Wang, G., Ding, Q., et al.: Effects of bounded noise and time delay on signal transmission in excitable neural networks. Chaos Soliton Fract. 157, 111929 (2022)

    MathSciNet  MATH  Google Scholar 

  40. Rajagopal, K., Panahi, S., Chen, M., et al.: Suppressing spiral wave turbulence in a simple fractional-order discrete neuron map using impulse triggering. Fractals 29, 2140030 (2021)

    MATH  Google Scholar 

  41. Paul Asir, M., Sathiyadevi, K., Philominathan, P., et al.: A nonlinear memductance induced intermittent and anti-phase synchronization. Chaos 32, 073125 (2022)

    MathSciNet  Google Scholar 

  42. Deco, G., Buehlmann, A., Masquelier, T., et al.: The role of rhythmic neural synchronization in rest and task conditions. Front. Hum. Neurosci. 5, 4 (2011)

    Google Scholar 

  43. Li, T., Wang, G., Yu, D., et al.: Synchronization mode transitions induced by chaos in modified Morris-Lecar neural systems with weak coupling. Nonlinear Dyn. 108, 2611–2625 (2022)

    Google Scholar 

  44. Yu, D., Lu, L., Wang, G., et al.: Synchronization mode transition induced by bounded noise in multiple time-delays coupled FitzHugh-Nagumo model. Chaos Soliton Fract. 147, 111000 (2021)

    MathSciNet  Google Scholar 

  45. Mehrabbeik, M., Parastesh, F., Ramadoss, J., et al.: Synchronization and chimera states in the network of electrochemically coupled memristive Rulkov neuron maps. Math. Biosci. Eng. 18, 9394–9409 (2021)

    MATH  Google Scholar 

  46. Ramakrishnan, B., Parastesh, F., Jafari, S., et al.: Synchronization in a multiplex network of nonidentical fractional-order neurons. Fractal Fract. 6, 169 (2022)

    Google Scholar 

  47. Steriade, M., McCormick, D.A., Sejnowski, J.: Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 5134 (1993)

    Google Scholar 

  48. Knoblich, U., Huang, L., Zeng, H., et al.: Neuronal cell-subtype specificity of neural synchronization in mouse primary visual cortex. Nat. Commun. 10, 2533 (2019)

    Google Scholar 

  49. Fell, J., Axmacher, N.: The role of phase synchronization in memory processes. Nat. Rev. Neurosci. 12, 105–114 (2011)

    Google Scholar 

  50. Gaillard, R., Dehaene, S., Adam, C., et al.: Converging intracranial markers of conscious access. PLoS Biol. 7, e1000061 (2009)

    Google Scholar 

  51. Roelfsema, P.R., Engel, A.K., König, P., et al.: Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385, 157–161 (1997)

    Google Scholar 

  52. Rodriguez, E., George, N., Lachaux, J.-P., et al.: Varela, perception’s shadow: long-distance synchronization of human brain activity. Nature 397, 430–433 (1999)

    Google Scholar 

  53. Mormann, F., Lehnertz, K., David, P., et al.: Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys. D 144, 358–369 (2000)

    MATH  Google Scholar 

  54. Galvan, A., Wichmann, T.: Pathophysiology of parkinsonism. Clin. Neurophysiol. 119, 1459–1474 (2008)

    Google Scholar 

  55. Lee, D.S.: Synchronization transition in scale-free networks: clusters of synchrony. Phys. Rev. E 72, 026208 (2005)

    Google Scholar 

  56. Sorrentino, F., di Bernardo, M., Huerta Cuéllar, G., et al.: Synchronization in weighted scale-free networks with degree-degree correlation. Physica D 224, 123–129 (2006)

    MathSciNet  MATH  Google Scholar 

  57. Budzinski, R.C., Rossi, K.L., Boaretto, B.R.R., et al.: Synchronization malleability in neural networks under a distance-dependent coupling. Phys. Rev. R. 2, 043309 (2020)

    Google Scholar 

  58. Yu, Y., Hill, A.P., McCormick, D.A.: Warm body temperature facilitates energy efficient cortical action potentials. PLoS Comput. Biol. 8, e1002456 (2012)

    Google Scholar 

  59. Rowbury, R.J.: Temperature effects on biological systems: introduction. Sc. Prog. 86, 1–7 (2003)

    Google Scholar 

  60. Arcus, V.L., Prentice, E.J., Hobbs, J.K., et al.: On the temperature dependence of enzyme-catalyzed rates. Biochemistry 55, 1681–1688 (2016)

    Google Scholar 

  61. Fu, X., Yu, Y.G.: Reliable and efficient processing of sensory information at body temperature by rodent cortical neurons. Nonlinear Dyn. 98, 215–231 (2019)

    Google Scholar 

  62. Song, X.L., Wang, H.T., Chen, Y., et al.: Emergence of an optimal temperature in action-potential propagation through myelinated axons. Phys. Rev. E 100, 032416 (2019)

    Google Scholar 

  63. Wang, G., Wu, Y., Xiao, F., et al.: Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction. Physica A 598, 127274 (2022)

    MathSciNet  MATH  Google Scholar 

  64. Ochab-Marcinek, A., Schmid, G., Goychuk, I., et al.: Noise-assisted spike propagation in myelinated neurons. Phys. Rev. E 79, 011904 (2009)

    Google Scholar 

  65. Ge, M., Wang, G., Jia, Y.: Influence of the Gaussian colored noise and electromagnetic radiation on the propagation of subthreshold signals in feedforward neural networks. Sci. China Tech. Sci. 64, 847–857 (2021)

    Google Scholar 

  66. Premraj, D., Suresh, K., Banerjee, T., et al.: Bifurcation delay in a network of locally coupled slow-fast systems. Phys. Rev. E 98, 022206 (2018)

    MathSciNet  Google Scholar 

  67. Machado, J.N., Matias, F.S.: Phase bistability between anticipated and delayed synchronization in neuronal populations. Phys. Rev. E 102, 032412 (2020)

    Google Scholar 

  68. Lu, L., Yang, L., Zhan, X., et al.: Cluster synchronization and firing rate oscillation induced by time delay in random network of adaptive exponential integrate-and-fire neural system. Eur. Phys. J. B 93, 205 (2020)

    Google Scholar 

  69. Wang, Q., Perc, M., Duan, Z., et al.: Delay-enhanced coherence of spiral waves in noisy Hodgkin-Huxley neuronal networks. Phys. Lett. A 372, 5681–5687 (2008)

    MATH  Google Scholar 

  70. Sainz-Trapága, M., Masoller, C., Braun, H.A., et al.: Influence of time-delayed feedback in the firing pattern of thermally sensitive neurons. Phys. Rev. E 70, 031904 (2004)

    Google Scholar 

  71. Guo, Y., Zhou, P., Yao, Z., et al.: Biophysical mechanism of signal encoding in an auditory neuron. Nonlinear Dyn. 105, 3603–3614 (2021)

    Google Scholar 

  72. Wang, H., Chen, Y.: Spatiotemporal activities of neural network exposed to external electric fields. Nonlinear Dyn. 85, 881–891 (2016)

    MathSciNet  Google Scholar 

  73. Lu, L., Kirunda, J.B., Xu, Y., et al.: Effects of temperature and electromagnetic induction on action potential of Hodgkin-Huxley model. Eur. Phys. J-Spec. Top. 227, 767–776 (2018)

    Google Scholar 

  74. Rall, W.: Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic inputs. J. Ncurophysiol. 30, 1138–1168 (1967)

    Google Scholar 

  75. Gonze, D., Bernard, S., Waltermann, C., et al.: Spontaneous synchronization of coupled circadian oscillators. Biophys. J. 89, 120–129 (2005)

    Google Scholar 

  76. Schmid, G., Goychuk, I., Hänggi, P.: Stochastic resonance as a collective property of ion channel assemblies. Europhys. Lett. 56, 22–28 (2001)

    Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China under Grant 12175080, and also supported by the Fundamental Research Funds for the Central Universities under Grants CCNU22JC009 and CCNU22QN004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Ding, Q., Li, T. et al. Effect of temperature on synchronization of scale-free neuronal network. Nonlinear Dyn 111, 2693–2710 (2023). https://doi.org/10.1007/s11071-022-07967-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07967-6

Keywords

Navigation