Skip to main content
Log in

Asymmetric vibrations and chaos in spherical caps under uniform time-varying pressure fields

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 07 December 2021

This article has been updated

Abstract

This paper presents a study on nonlinear asymmetric vibrations in shallow spherical caps under pressure loading. The Novozhilov’s nonlinear shell theory is used for modeling the structural strains. A reduced-order model is developed through the Rayleigh–Ritz method and Lagrange equations. The equations of motion are numerically integrated using an implicit solver. The bifurcation scenario is addressed by varying the external excitation frequency. The occurrence of asymmetric vibrations related to quasiperiodic and chaotic motion is shown through the analysis of time histories, spectra, Poincaré maps, and phase planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8
Fig. 9
Fig. 10.
Fig. 11

Similar content being viewed by others

Data availability

Data are available from the authors upon reasonable request.

Change history

References

  1. Amabili, M.: Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials. Cambridge University Press, Cambridge (2018)

    Book  MATH  Google Scholar 

  2. Amabili, M.: Nonlinear vibrations of angle-ply laminated circular cylindrical shells: skewed modes. Compos. Struct. 94(12), 3697–3709 (2012)

    Article  Google Scholar 

  3. Amabili, M., Balasubramanian, P., Ferrari, G.: Travelling wave and non-stationary response in nonlinear vibrations of water-filled circular cylindrical shells: experiments and simulations. J. Sound Vib. 381, 220–245 (2016)

    Article  Google Scholar 

  4. Krenzke, M.A., Kiernan, T.J.: Elastic stability of near-perfect shallow spherical shells. AIAA J. 1(12), 2855–2857 (1963)

    Article  Google Scholar 

  5. Huang, N.: Unsymmetrical buckling of thin shallow spherical shells. J. Appl. Mech. 31(3), 447–457 (1964)

    Article  MathSciNet  Google Scholar 

  6. Weinitschke, H.J.: On Asymmetric buckling of shallow spherical shells. J. Math. Phys. 44(1–4), 141–163 (1965)

    Article  MathSciNet  Google Scholar 

  7. Yamada, S., Uchiyama, K., Yamada, M.: Experimental investigation of the buckling of shallow spherical shells. Int. J. Non. Linear. Mech. 18(1), 37–54 (1983)

    Article  Google Scholar 

  8. Hutchinson, J. W.: Imperfection-Sensitivity of Externally Pressurized Spherical Shells, National Aeronautics and Space Administration, NASA-CR-68613 (1965)

  9. Gonçalves, P.B., Croll, J.G.A.: Axisymmetric buckling of pressure-loaded spherical caps. J. Struct. Eng. 118(4), 970–985 (1992)

    Article  Google Scholar 

  10. NASA: Buckling of Thin Walled Doubly-Curved Shells, National Aeronautics and Space Administration, NASA SP-8032 (1969).

  11. Wagner, H.N.R., Hühne, C., Niemann, S.: Robust knockdown factors for the design of spherical shells under external pressure: development and validation. Int. J. Mech. Sci. 141(January), 58–77 (2018)

    Article  Google Scholar 

  12. Evkin, A.Y., Lykhachova, O.V.: Design buckling pressure for thin spherical shells: development and validation. Int. J. Solids Struct. 156–157, 61–72 (2019)

    Article  Google Scholar 

  13. Lock, M.H., Okubo, S., Whittier, J.S.: Experiments on the snapping of a shallow dome under a step pressure load. AIAA J. 6(7), 1320–1326 (1968)

    Article  Google Scholar 

  14. Stricklin, J.A., Haisler, W.E., Macdougall, H.R., Stebbins, F.J.: Nonlinear analysis of shells of revolution by the matrix displacement method. AIAA J. 6(12), 2306–2312 (1968)

    Article  MATH  Google Scholar 

  15. Stricklin, J.A., Martinez, J.E., Tillerson, J.R., Hong, J.H., Haisler, W.E.: Nonlinear dynamic analysis of shells of revolution by matrix displacement method. AIAA J. 9(4), 629–636 (1971)

    Article  MATH  Google Scholar 

  16. Huang, N.C.: Axisymmetric dynamic snap-through of elastic clamped shallow spherical shells. AIAA J. 7(2), 215–220 (1969)

    Article  MATH  Google Scholar 

  17. Stephens, W.B., Fulton, R.E.: Axisymmetric static and dynamic buckling of spherical caps due to centrally distributed pressures. AIAA J. 7(11), 2120–2126 (1969)

    Article  Google Scholar 

  18. Ball, R.E., Burt, J.A.: Dynamic buckling of shallow spherical shells. J. Appl. Mech. 40(2), 411–416 (1973)

    Article  Google Scholar 

  19. Akkas, N.: Bifurcation and snap-through phenomena in asymmetric dynamic analysis of shallow spherical shells. Comput. Struct. 6(3), 241–251 (1976)

    Article  MATH  Google Scholar 

  20. Kao, R., Perrone, N.: Asymmetric buckling of spherical caps with asymmetrical imperfections. J. Appl. Mech. 38(1), 172–178 (1971)

    Article  Google Scholar 

  21. Kao, R.: Large deformation elastic-plastic buckling analysis of spherical caps with initial imperfections. Comput. Struct. 11(6), 609–619 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kao, R.: Nonlinear dynamic buckling of spherical caps with initial imperfections. Comput. Struct. 12(1), 49–63 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yu, Y.Y.: Generalized Hamilton’s principle and variational equation of motion in nonlinear elasticity theory, with application to plate theory. J. Acoust. Soc. Am. 36(1), 111–120 (1964)

    Article  MathSciNet  Google Scholar 

  24. Grossman, P.L., Koplik, B., Yu, Y.: Nonlinear vibrations of shallow spherical shells. J. Appl. Mech. 36(3), 451–458 (1969)

    Article  MATH  Google Scholar 

  25. Evensen, H.A., Evan-Iwanowski, R.M.: Dynamic response and stability of shallow spherical shells subject to time-dependent loading. AIAA J. 5(5), 969–976 (1967)

    Article  MATH  Google Scholar 

  26. Yasuda, K., Kushida, G.: Nonlinear forced oscillations of a shallow spherical shell. Bull. JSME 27(232), 2233–2240 (1984)

    Article  MathSciNet  Google Scholar 

  27. Gonçalves, P.B.: Axisymmetric vibrations of imperfect shallow spherical caps under pressure loading. J. Sound Vib. 174(2), 249–260 (1994)

    Article  MATH  Google Scholar 

  28. Gonçalves, P.B.: Jump phenomena, bifurcations, and chaos in a pressure loaded spherical cap under harmonic excitation. Appl. Mech. Rev. 46(11S), S279–S288 (1993)

    Article  Google Scholar 

  29. Soliman, M.S., Goncalves, P.B.: Chaotic behavior resulting in transient and steady state instabilities of pressure-loaded shallow spherical shells. J. Sound Vib. 259(3), 497–512 (2003)

    Article  Google Scholar 

  30. Thomas, O., Touzé, C., Chaigne, A.: Non-linear vibrations of free-edge thin spherical shells: modal interaction rules and 1:1:2 internal resonance. Int. J. Solids Struct. 42(11–12), 3339–3373 (2005)

    Article  MATH  Google Scholar 

  31. Thomas, O., Touzé, C., Luminais, É.: Non-linear vibrations of free-edge thin spherical shells: experiments on a 1:1:2 internal resonance. Nonlinear Dyn. 49(1–2), 259–284 (2007)

    Article  MATH  Google Scholar 

  32. Touzé, C., Thomas, O.: Non-linear behaviour of free-edge shallow spherical shells: effect of the geometry. Int. J. Non. Linear. Mech. 41(5), 678–692 (2006)

    Article  MATH  Google Scholar 

  33. Touzé, C., Thomas, O., Amabili, M.: Transition to chaotic vibrations for harmonically forced perfect and imperfect circular plates. Int. J. Non. Linear. Mech. 46(1), 234–246 (2011)

    Article  Google Scholar 

  34. Krysko, V.A., Awrejcewicz, J., Dobriyan, V., Papkova, I.V., Krysko, V.A.: Size-dependent parameter cancels chaotic vibrations of flexible shallow nano-shells. J. Sound Vib. 446, 374–386 (2019)

    Article  Google Scholar 

  35. Iarriccio, G., Pellicano, F.: Nonlinear dynamics and stability of shallow spherical caps under pressure loading. J. Comput. Nonlinear Dyn. 16(2), 1–8 (2021)

    Google Scholar 

  36. Novozhilov, V.V.: Foundations of the Nonlinear Theory of Elasticity. Graylock Press (1953)

    MATH  Google Scholar 

  37. Amabili, M.: Non-linear vibrations of doubly curved shallow shells. Int. J. Non. Linear. Mech. 40(5), 683–710 (2005)

    Article  MATH  Google Scholar 

  38. Leissa, A.W.: Vibration of Shells, National Aeronautics and Space Administration, NASA SP-288, Washington, D.C. (1973)

  39. de Souza, V.C.M., Croll, J.G.A.: An energy analysis of the free vibrations of isotropic spherical shells. J. Sound Vib. 73(3), 379–404 (1980)

    Article  MATH  Google Scholar 

  40. Leissa, A.W.: The historical bases of the Rayleigh and Ritz methods. J. Sound Vib. 287(4–5), 961–978 (2005)

    Article  Google Scholar 

  41. Meirovitch, L.: Fundamentals of vibration study. Nature 150(3805), 392–392 (1942)

    Article  Google Scholar 

  42. Evensen, D.A.: Nonlinear flexural vibrations of thin circular rings. J. Appl. Mech. 33(3), 553–560 (1966)

    Article  Google Scholar 

  43. Kubenko, V.D., Koval’chuk, P.S., Krasnopol’skaya, T.S.: Effect of initial camber on natural nonlinear vibrations of cylindrical shells. Sov. Appl. Mech. 18(1), 34–39 (1982)

    Article  MATH  Google Scholar 

  44. Amabili, M., Pellicano, F., Païdoussis, M.P.: Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid part i: stability. J. Sound Vib. 225(4), 655–699 (1999)

    Article  Google Scholar 

  45. Amabili, M., Pellicano, F., Païdoussis, M.P.: Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. part iii: truncation effect without flow and experiments. J. Sound Vib. 237(4), 617–640 (2000)

    Article  Google Scholar 

  46. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  47. Pellicano, F.: Vibrations of circular cylindrical shells: theory and experiments. J. Sound Vib. 303(1–2), 154–170 (2007)

    Article  Google Scholar 

  48. Amabili, M., Breslavsky, I.D.: Displacement dependent pressure load for finite deflection of doubly-curved thick shells and plates. Int. J. Non. Linear. Mech. 77, 265–273 (2015)

    Article  Google Scholar 

  49. Zoelly, R.: “Uber Ein Knickungsproblem an Der Kugelschale.,” ETH Zürich, Zürich, Switzerland. (1915)

  50. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  51. Moon, F.C.: Chaotic Vibrations: An Introduction for Applied Scientists and Engineers. Wiley-Interscience, New York (2004)

    Book  MATH  Google Scholar 

  52. Parker, T.S., Chua, L.O.: Chaos: a tutorial for engineers. Proc. IEEE 75(8), 982–1008 (1987)

    Article  Google Scholar 

  53. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, Weinheim (1995)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University of Modena and Reggio Emilia for supporting this research through the project “Interflu / Non-Newtonian Fluids and Fluid-Structure Interaction.”

Funding

FAR2020 Mission Oriented—(CUP E99C20001160007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Iarriccio.

Ethics declarations

Conflict of interests

The authors declare they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iarriccio, G., Zippo, A. & Pellicano, F. Asymmetric vibrations and chaos in spherical caps under uniform time-varying pressure fields. Nonlinear Dyn 107, 313–329 (2022). https://doi.org/10.1007/s11071-021-07033-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07033-7

Keywords

Navigation