Skip to main content
Log in

Dynamic analysis of the response of Duffing-type oscillators subject to interacting parametric and external excitations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 19 November 2021

This article has been updated

Abstract

Prediction of the response of nonlinear dynamical systems under interacting parametric and external excitations is important in designing systems such as sensors, amplifiers or energy harvesters, to achieve the desired performance. This paper concerns the nonlinear forced Mathieu equation, with linear damping and a 2:1 ratio between the parametric and external excitation frequencies. The Method of Varying Amplitudes (MVA) is employed to derive approximate analytical expressions for the response of the system. Both single-term and double-term solutions are developed: it is seen that, employing the double-term approximation, the MVA can accurately predict the response of the system over a wide range of frequencies and system parameters, showing a maximum of 0.2% deviation from numerical results obtained by direct integration of the equation of motion. This is in contrast with most of the available theoretical approaches such as the conventional Method of Multiple Scales, which can predict the response accurately only for a narrow range of system parameters and excitation frequencies. Furthermore, it is seen that the response is bounded, and analytical expressions for the frequency and amplitude of the upper bound are developed: this is unlike other methods which predict unbounded response, unless nonlinear damping is considered. Analytical expressions for the response are developed, and results are verified with numerical results obtained from direct integration of the equation of motion. Numerical examples are presented, showing good agreement with results obtained by the MVA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  1. Wu, Z., Xie, C., Mei, G., Dong, H.: Dynamic analysis of parametrically excited marine riser under simultaneous stochastic waves and vortex. Adv. Struct. Eng. 22, 268–283 (2018)

    Article  Google Scholar 

  2. Zhou, L., Chen, F.: Chaotic motion of the parametrically excited roll motion for a class of ships in regular longitudinal waves. Ocean Eng. 195, 106729 (2020)

    Article  Google Scholar 

  3. Thompson, J., Rainey, R., Soliman, M.: Mechanics of ship capsize under direct and parametric wave excitation. Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 338, 471–490 (1992)

    MATH  Google Scholar 

  4. Gonzalez-Buelga, A., Neild, S., Wagg, D., Macdonald, J.: Modal stability of inclined cables subjected to vertical support excitation. J. Sound Vib. 318, 565–579 (2008)

    Article  Google Scholar 

  5. Peng, J., Xiang, M., Wang, L., Xie, X., Sun, H., Yu, J.: Nonlinear primary resonance in vibration control of cable-stayed beam with time delay feedback. Mech. Syst. Signal Process. 137, 106488 (2020)

    Article  Google Scholar 

  6. Torteman, B., Kessler, Y., Liberzon, A., Krylov, S.: Micro-beam resonator parametrically excited by electro-thermal Joule’s heating and its use as a flow sensor. Nonlinear Dyn. 98, 3051–3065 (2019)

    Article  Google Scholar 

  7. Meesala, V., Hajj, M.: Parameter sensitivity of cantilever beam with tip mass to parametric excitation. Nonlinear Dyn. 95, 3375–3384 (2019)

    Article  MATH  Google Scholar 

  8. Zhang, W., Turner, K.: Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sens. Actuat. A Phys. 122, 23–30 (2005)

    Article  Google Scholar 

  9. Xia, G., Fang, F., Zhang, M., Wang, Q., Wang, J.: Performance analysis of parametrically and directly excited nonlinear piezoelectric energy harvester. Arch. Appl. Mech. 89, 2147–2166 (2019)

    Article  Google Scholar 

  10. Jia, Y., Yan, J., Soga, K., Seshia, A.: Parametrically excited MEMS vibration energy harvesters with design approaches to overcome the initiation threshold amplitude. J. Micromech. Microeng. 23, 114007 (2013)

    Article  Google Scholar 

  11. Yildirim, T., Ghayesh, M., Li, W., Alici, G.: Design and development of a parametrically excited nonlinear energy harvester. Energy Conv. Manag. 126, 247–255 (2016)

    Article  Google Scholar 

  12. Alevras, P., Theodossiades, S., Rahnejat, H.: Broadband energy harvesting from parametric vibrations of a class of nonlinear Mathieu systems. Appl. Phys. Lett. 110, 233901 (2017)

    Article  Google Scholar 

  13. Kuang, Y., Zhu, M.: Parametrically excited nonlinear magnetic rolling pendulum for broadband energy harvesting. Appl. Phys. Lett. 114, 203903 (2019)

    Article  Google Scholar 

  14. Dotti, F., Reguera, F., Machado, S.: Damping in a parametric pendulum with a view on energy harvesting. Mech. Res. Commun. 81, 11–16 (2017)

    Article  Google Scholar 

  15. Abdelkefi, A., Nayfeh, A., Hajj, M.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67, 1147–1160 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, X., Rafiee, M., Mareishi, S.: Nonlinear dynamics of piezoelectric nanocomposite energy harvesters under parametric resonance. Nonlinear Dyn. 79, 1863–1880 (2014)

    Article  MATH  Google Scholar 

  17. Kumar, R., Gupta, S., Ali, S.: Energy harvesting from chaos in base excited double pendulum. Mech. Syst. Signal Process. 124, 49–64 (2019)

    Article  Google Scholar 

  18. Nabholz, U., Lamprecht, L., Mehner, J., Zimmermann, A., Degenfeld-Schonburg, P.: Parametric amplification of broadband vibrational energy harvesters for energy-autonomous sensors enabled by field-induced striction. Mech. Syst. Signal Process. 139, 106642 (2020)

    Article  Google Scholar 

  19. Garg, A., Dwivedy, S.: Dynamic analysis of piezoelectric energy harvester under combination parametric and internal resonance: a theoretical and experimental study. Nonlinear Dyn. 101, 2107–2129 (2020)

    Article  Google Scholar 

  20. Zorin, A.: Flux-driven Josephson traveling-wave parametric amplifier. Phys. Rev. Appl. 12, 044051 (2019)

    Article  Google Scholar 

  21. Rhoads, J., Shaw, S.: The impact of nonlinearity on degenerate parametric amplifiers. Appl. Phys. Lett. 96, 234101 (2010)

    Article  Google Scholar 

  22. Dolev, A., Bucher, I.: Experimental and numerical validation of digital, electromechanical, parametrically excited amplifiers. J. Vib. Acoust. 138, 061001 (2016)

    Article  Google Scholar 

  23. Jäckel, P., Mullin, T.: A numerical and experimental study of codimension–2 points in a parametrically excited double pendulum. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454, 3257–3274 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sorokin, V.: On the unlimited gain of a nonlinear parametric amplifier. Mech. Res. Commun. 62, 111–116 (2014)

    Article  Google Scholar 

  25. Dolev, A., Bucher, I.: Optimizing the dynamical behavior of a dual-frequency parametric amplifier with quadratic and cubic nonlinearities. Nonlinear Dyn. 92, 1955–1974 (2018)

    Article  Google Scholar 

  26. Sah, S., Mann, B.: Transition curves in a parametrically excited pendulum with a force of elliptic type. Proc. R. Soc. A Math. Phys. Eng. Sci. 468, 3995–4007 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Peruzzi, N., Chavarette, F., Balthazar, J., Tusset, A., Perticarrari, A., Brasil, R.: The dynamic behavior of a parametrically excited time-periodic MEMS taking into account parametric errors. J. Vib. Control. 22, 4101–4110 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang, Y., Fu, J., Liu, A.: Dynamic instability of Euler-Bernoulli nanobeams subject to parametric excitation. Comp. B Eng. 164, 226–234 (2019)

    Article  Google Scholar 

  29. Mao, X., Ding, H., Chen, L.: Parametric resonance of a translating beam with pulsating axial speed in the super-critical regime. Mech. Res. Commun. 76, 72–77 (2016)

    Article  Google Scholar 

  30. Rhoads, J., Shaw, S., Turner, K., Moehlis, J., DeMartini, B., Zhang, W.: Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. J. Sound Vib. 296, 797–829 (2006)

    Article  Google Scholar 

  31. Rhoads, J., Shaw, S., Turner, K.: The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation. J. Micromech. Microeng. 16, 890–899 (2006)

    Article  Google Scholar 

  32. Shibata, A., Ohishi, S., Yabuno, H.: Passive method for controlling the nonlinear characteristics in a parametrically excited hinged-hinged beam by the addition of a linear spring. J. Sound Vib. 350, 111–122 (2015)

    Article  Google Scholar 

  33. Nayfeh, A., Mook, D.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  34. Aghamohammadi, M., Sorokin, V., Mace, B.: On the response attainable in nonlinear parametrically excited systems. Appl. Phys. Lett. 115, 154102 (2019)

    Article  Google Scholar 

  35. Chen, S., Epureanu, B.: Forecasting bifurcations in parametrically excited systems. Nonlinear Dyn. 91, 443–457 (2017)

    Article  Google Scholar 

  36. Warminski, J.: Nonlinear dynamics of self-, parametric, and externally excited oscillator with time delay: van der Pol versus Rayleigh models. Nonlinear Dyn. 99, 35–56 (2019)

    Article  MATH  Google Scholar 

  37. Warminski, J.: Frequency locking in a nonlinear MEMS oscillator driven by harmonic force and time delay. Int. J. Dyn. Control. 3, 122–136 (2015)

    Article  MathSciNet  Google Scholar 

  38. Li, D., Shaw, S.: The effects of nonlinear damping on degenerate parametric amplification. Nonlinear Dyn. 102, 2433–2452 (2020)

    Article  Google Scholar 

  39. Zaitsev, S., Shtempluck, O., Buks, E., Gottlieb, O.: Nonlinear damping in a micromechanical oscillator. Nonlinear Dyn. 67, 859–883 (2011)

    Article  MATH  Google Scholar 

  40. Gutschmidt, S., Gottlieb, O.: Nonlinear dynamic behavior of a microbeam array subject to parametric actuation at low, medium and large DC-voltages. Nonlinear Dyn. 67, 1–36 (2010)

    Article  MATH  Google Scholar 

  41. Szabelski, K., Warminski, J.: Self-excited system vibrations with parametric and external excitations. J. Sound Vib. 187, 595–607 (1995)

    Article  MATH  Google Scholar 

  42. Szabelski, K., Warmiński, J.: Parametric self-excited non-linear system vibrations analysis with inertial excitation. Int. J. Non-Linear Mech. 30, 179–189 (1995)

    Article  MATH  Google Scholar 

  43. Szabelski, K., Warmiński, J.: Vibration of a non-linear self-excited system with two degrees of freedom under external and parametric excitation. Nonlinear Dyn. 14, 23–36 (1997)

    Article  MATH  Google Scholar 

  44. Sorokin, V., Thomsen, J.: Vibration suppression for strings with distributed loading using spatial cross-section modulation. J. Sound Vib. 335, 66–77 (2015)

    Article  Google Scholar 

  45. Neumeyer, S., Sorokin, V., van Gastel, M., Thomsen, J.: Frequency detuning effects for a parametric amplifier. J. Sound Vib. 445, 77–87 (2019)

    Article  Google Scholar 

  46. Aghamohammadi, M., Sorokin, V., Mace, B.: Response of linear parametric amplifiers with arbitrary direct and parametric excitations. Mech. Res. Commun. 109, 103585 (2020)

    Article  Google Scholar 

  47. Sorokin, V.: Longitudinal wave propagation in a one-dimensional quasi-periodic waveguide. Proc. R. Soc. A Math. Phys. Eng. Sci. 475, 20190392 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Kim, C., Lee, C., Perkins, N.: Nonlinear vibration of sheet metal plates under interacting parametric and external excitation during manufacturing. J. Vib. Acoust. 127, 36–43 (2005)

    Article  Google Scholar 

  49. Zaghari, B., Rustighi, E., Ghandchi Tehrani, M.: Phase dependent nonlinear parametrically excited systems. J. Vib. Control. 25, 497–505 (2018)

    Article  MathSciNet  Google Scholar 

  50. Mitropolskii, I., Dao, N.: Applied asymptotic methods in nonlinear oscillations. Springer, Dordrecht (2011)

    Google Scholar 

Download references

Funding

The first author was supported by a Faculty of Engineering Doctoral Scholarship at the University of Auckland.

Author information

Authors and Affiliations

Authors

Contributions

V.S. and B.M. conceived of, designed and supervised the study. M.A. performed the theoretical analysis including the numerical simulations and drafted the manuscript. All authors read, edited and approved the manuscript.

Corresponding author

Correspondence to Mehrdad Aghamohammadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: second approximation of MMS assuming Duffing nonlinearity term \(\eta\) to be \(O(\varepsilon )\)

In Appendix, results from the second-order MMS are briefly reviewed [33]. To obtain the frequency response equation of a dynamical system under pure parametric excitation with no external excitation (\(d = 0\)) using the MMS, assuming the system parameters including the Duffing nonlinearity term are all small and of order \(\varepsilon\), we express Eq. (1) as

$$ \ddot{u} + \varepsilon \beta_{\varepsilon } \dot{u} + \omega_{0}^{2} \left( {1 + \varepsilon P_{\varepsilon } \cos \left( {\varOmega t} \right)} \right)u + \varepsilon \eta_{\varepsilon } u^{3} = 0, $$
(A1)

where

$$ \varepsilon \beta_{\varepsilon } = \beta ,\;\varepsilon P_{\varepsilon } = P,\;\varepsilon \eta_{\varepsilon } = \eta . $$
(A2)

To the second approximation of the MMS, the response of the system can be written as [33]

$$ u\left( {T_{0} ,T_{1} ,T_{2} } \right) = u_{0} \left( {T_{0} ,T_{1} ,T_{2} } \right) + \varepsilon u_{1} \left( {T_{0} ,T_{1} ,T_{2} } \right) + \varepsilon^{2} u_{2} \left( {T_{0} ,T_{1} ,T_{2} } \right) + O\left( {\varepsilon^{3} } \right), $$
(A3)

where \(T_{0} = t\), \(T_{1} = \varepsilon t\) and \(T_{2} = \varepsilon^{2} t\) are time scales. Defining the operator

$$ D_{n} = \frac{\partial }{{\partial T_{n} }},\;\;n = 0,1,2,..., $$
(A4)

the time derivatives can be expressed as

$$ \frac{{\text{d}}}{{{\text{d}}t}} = D_{0} + \varepsilon D_{1} + \varepsilon^{2} D_{2} + O(\varepsilon^{3} ), $$
(A5)
$$ \frac{{{\text{d}}^{2} }}{{{\text{d}}t^{2} }} = D_{0}^{2} + 2\varepsilon D_{0} D_{1} + \varepsilon^{2} \left( {2D_{0} D_{1} + D_{1}^{2} } \right) + O\left( {\varepsilon^{3} } \right), $$
(A6)

Substituting Eq. (A3) into Eq. (A1), considering Eqs. (A4)–(A6) and equating coefficients of like powers of \(\varepsilon\), we obtain

$$ O(1):\;\;D_{0}^{2} u_{0} + \omega_{0}^{2} u_{0} = 0, $$
(A7)
$$ O(\varepsilon ):D_{0}^{2} u_{1} + \omega_{0}^{2} u_{1} = - 2D_{0} D_{1} u_{0} - \beta_{\varepsilon } D_{0} u_{0} - \eta_{\varepsilon } u_{0}^{3} - \frac{1}{2}\omega_{0}^{2} P_{\varepsilon } \left( {e^{{i\varOmega T_{0} }} + e^{{ - i\varOmega T_{0} }} } \right)u_{0} , $$
(A8)
$$ \begin{aligned} O(\varepsilon^{2} ):D_{0}^{2} u_{2} + \omega_{0}^{2} u_{2} = & - D_{1}^{2} u_{0} - 2D_{0} D_{2} u_{0} - 2D_{0} D_{1} u_{1} - 3\eta_{\varepsilon } u_{0}^{2} u_{1} \\ & \;\; - \beta_{\varepsilon } \left( {D_{1} u_{0} + D_{0} u_{1} } \right) - \frac{1}{2}\omega_{0}^{2} P_{\varepsilon } \left( {e^{{i\varOmega T_{0} }} + e^{{ - i\varOmega T_{0} }} } \right)u_{1} . \\ \end{aligned} $$
(A9)

The solution of Eq. (A7) is assumed to be of the form

$$ u_{0} = A\left( {T_{1} ,T_{2} } \right)e^{{i\omega_{0} T_{0} }} + \overline{A}\left( {T_{1} ,T_{2} } \right)e^{{ - i\omega_{0} T_{0} }} , $$
(A10)

where \(\overline{A}\left( {T_{1} ,T_{2} } \right)\) is the complex conjugate of \(A\left( {T_{1} ,T_{2} } \right)\). Substituting Eq. (A10) into Eq. (A8), we obtain

$$ \begin{aligned} D_{0}^{2} u_{1} + \omega_{0}^{2} u_{1} = & \left( { - 2i\omega_{0} D_{1} A - i\omega_{0} \beta_{\varepsilon } A - \frac{1}{2}\omega_{0}^{2} P_{\varepsilon } \overline{A}e^{{i\left( {\Omega - 2\omega_{0} } \right)T_{0} }} - 3\eta_{\varepsilon } A^{2} \overline{A}} \right)e^{{i\omega_{0} T_{0} }} \\ & \;\; - \frac{1}{2}\omega_{0}^{2} P_{\varepsilon } Ae^{{i\left( {\varOmega + \omega_{0} } \right)T_{0} }} - \eta_{\varepsilon } A^{3} e^{{3i\omega_{0} T_{0} }} + {\text{CC}}, \\ \end{aligned} $$
(A11)

where \({\text{CC}}\) is the complex conjugate of the preceding terms. Considering \(\varOmega \approx 2\omega_{0}\), the coefficients of \(\exp \left( {i\omega_{0} T_{0} } \right)\) in Eq. (A11) represent the secular terms which can be eliminated when

$$ D_{1} A = - \frac{1}{2}\beta_{\varepsilon } A + \frac{i}{4}\omega_{0} P_{\varepsilon } \overline{A}e^{{i\left( {\varOmega - 2\omega_{0} } \right)T_{0} }} + \frac{3i}{{2\omega_{0} }}\eta_{\varepsilon } A^{2} \overline{A}. $$
(A12)

Consequently, the particular solution of \(u_{1}\) in Eq. (A11) is obtained as

$$ u_{1} = \frac{{\omega_{0}^{2} P_{\varepsilon } A}}{{2\varOmega \left( {\varOmega + 2\omega_{0} } \right)}}e^{{i\left( {\varOmega + \omega_{0} } \right)T_{0} }} + \frac{1}{{8\omega_{0}^{2} }}\eta_{\varepsilon } A^{3} e^{{3i\omega_{0} T_{0} }} + CC. $$
(A13)

Substituting \(u_{0}\) and \(u_{1}\) from Eqs. (A10) and (A13) into Eq. (A9), we obtain

$$ \begin{aligned} D_{0}^{2} u_{2} + \omega_{0}^{2} u_{2} = & \left( { - D_{1}^{2} A - \beta_{\varepsilon } D_{1} A - 2i\omega_{0} D_{2} A - \frac{{\omega_{0}^{4} P_{\varepsilon }^{2} A}}{{4\varOmega \left( {\varOmega + 2\omega_{0} } \right)}} - \frac{3}{{8\omega_{0}^{2} }}\eta_{\varepsilon }^{2} \overline{A}^{2} A^{3} - \frac{{3\omega_{0}^{2} \eta_{\varepsilon } P_{\varepsilon } A\overline{A}^{2} }}{{2\varOmega \left( {\varOmega + 2\omega_{0} } \right)}}e^{{i\left( {\varOmega - 2\omega_{0} } \right)T_{0} }} - \frac{1}{16}\eta_{\varepsilon } P_{\varepsilon } A^{3} e^{{ - i\left( {\varOmega - 2\omega_{0} } \right)T_{0} }} } \right)e^{{i\omega_{0} T_{0} }} \\ & \;\; + {\text{NST}} + {\text{CC}} \\ \end{aligned} $$
(A14)

where \({\text{NST}}\) denotes the non-secular terms. Defining a frequency detuning parameter \(\sigma\) such that

$$ \varOmega - 2\omega_{0} = \varepsilon \sigma , $$
(A15)

eliminating the secular terms in Eq. (A14) give

$$ D_{1}^{2} A = - \beta_{\varepsilon } D_{1} A - 2i\omega_{0} D_{2} A - \frac{{\omega_{0}^{4} P_{\varepsilon }^{2} A}}{{4\varOmega \left( {\varOmega + 2\omega_{0} } \right)}} - \frac{3}{{8\omega_{0}^{2} }}\eta_{\varepsilon }^{2} \overline{A}^{2} A^{3} - \frac{{3\omega_{0}^{2} \eta_{\varepsilon } P_{\varepsilon } A\overline{A}^{2} }}{{2\varOmega \left( {\varOmega + 2\omega_{0} } \right)}}e^{{i\sigma T_{1} }} - \frac{1}{16}\eta_{\varepsilon } P_{\varepsilon } A^{3} e^{{ - i\sigma T_{1} }} . $$
(A16)

Furthermore, Eq. (A12) can be rewritten as

$$ \begin{aligned} D_{1}^{2} A = & \frac{1}{16}A\left( {\omega_{0}^{2} P_{\varepsilon }^{2} + 4\beta_{\varepsilon }^{2} } \right) - \frac{3i}{{\omega_{0} }}\beta_{\varepsilon } \eta_{\varepsilon } A^{2} \overline{A} - \frac{9}{{4\omega_{0}^{2} }}\eta_{\varepsilon }^{2} A^{3} \overline{A}^{2} \\ & \;\; - \left( {\frac{i}{4}\omega_{0} \beta_{\varepsilon } P_{\varepsilon } \overline{A} + \frac{1}{4}\omega_{0} P_{\varepsilon } \sigma \overline{A} + \frac{3}{8}\eta_{\varepsilon } P_{\varepsilon } A\overline{A}^{2} } \right)e^{{i\sigma T_{1} }} \\ & \;\; + \frac{3}{8}\eta_{\varepsilon } P_{\varepsilon } A^{3} e^{{ - i\sigma T_{1} }} . \\ \end{aligned} $$
(A17)

Also, from Eq. (A16) and considering Eq. (12) we obtain

$$ \begin{aligned} D_{1}^{2} A = & \frac{1}{2}\beta_{\varepsilon }^{2} A - \frac{3i}{{2\omega_{0} }}\beta_{\varepsilon } \eta_{\varepsilon } A^{2} \overline{A} - 2i\omega_{0} D_{2} A - \frac{{\omega_{0}^{4} P_{\varepsilon }^{2} A}}{{4\varOmega \left( {\varOmega + 2\omega_{0} } \right)}} \\ & \;\; - \frac{3}{{8\omega_{0}^{2} }}\eta_{\varepsilon }^{2} A^{3} \overline{A}^{2} - \left( {\frac{i}{4}\omega_{0} \beta_{\varepsilon } P_{\varepsilon } \overline{A} + \frac{{3\omega_{0}^{2} \eta_{\varepsilon } P_{\varepsilon } A\overline{A}^{2} }}{{2\varOmega \left( {\varOmega + 2\omega_{0} } \right)}}} \right)e^{{i\sigma T_{1} }} \\ & \;\; - \frac{1}{16}\eta_{\varepsilon } P_{\varepsilon } A^{3} e^{{ - i\sigma T_{1} }} . \\ \end{aligned} $$
(A18)

Combining Eqs. (A17) and (A18) and cancelling \(D_{1}^{2} A\) give

$$ \begin{aligned} 2i\omega_{0} D_{2} A = & \frac{1}{4}\beta_{\varepsilon }^{2} A - \frac{1}{16}\omega_{0}^{2} P_{\varepsilon }^{2} A - \frac{{\omega_{0}^{4} P_{\varepsilon }^{2} A}}{{4\varOmega \left( {\varOmega + 2\omega_{0} } \right)}} + \frac{3i}{{2\omega_{0} }}\beta_{\varepsilon } \eta_{\varepsilon } A^{2} \overline{A} \\ & \;\; + \frac{15}{{8\omega_{0}^{2} }}\eta_{\varepsilon }^{2} A^{3} \overline{A}^{2} + \left( {\frac{1}{4}\omega_{0} P_{\varepsilon } \sigma \overline{A} + \frac{3}{8}\eta_{\varepsilon } P_{\varepsilon } A\overline{A}^{2} - \frac{{3\omega_{0}^{2} \eta_{\varepsilon } P_{\varepsilon } A\overline{A}^{2} }}{{2\varOmega \left( {\varOmega + 2\omega_{0} } \right)}}} \right)e^{{i\sigma T_{1} }} \\ & \;\; - \frac{7}{16}\eta_{\varepsilon } P_{\varepsilon } A^{3} e^{{ - i\sigma T_{1} }} . \\ \end{aligned} $$
(A19)

Multiplying Eq. (A12) by \(2i\omega_{0} \varepsilon\) and Eq. (A19) by \(\varepsilon^{2}\) and combining the resulting equations yield

$$ \begin{aligned} 2i\omega_{0} \left( {\varepsilon D_{1} A + \varepsilon^{2} D_{2} A} \right) + & \varepsilon \left( {i\omega_{0} \beta_{\varepsilon } A + \frac{1}{2}\omega_{0}^{2} P_{\varepsilon } \overline{A}e^{{i\sigma T_{1} }} + 3\eta_{\varepsilon } A^{2} \overline{A}} \right) \\ + & \varepsilon^{2} \left( {\frac{1}{16}\omega_{0}^{2} P_{\varepsilon }^{2} A + \frac{{\omega_{0}^{4} P_{\varepsilon }^{2} A}}{{4\varOmega \left( {\varOmega + 2\omega_{0} } \right)}} - \frac{1}{4}\beta_{\varepsilon }^{2} A - \frac{3i}{{2\omega_{0} }}\beta_{\varepsilon } \eta_{\varepsilon } A^{2} \overline{A} - \frac{15}{{8\omega_{0}^{2} }}\eta_{\varepsilon }^{2} A^{3} \overline{A}^{2} - \frac{1}{4}\omega_{0} P_{\varepsilon } \sigma \overline{A}e^{{i\sigma T_{1} }} - \frac{3}{8}\eta_{\varepsilon } P_{\varepsilon } A\overline{A}^{2} e^{{i\sigma T_{1} }} + \frac{{3\omega_{0}^{2} \eta_{\varepsilon } P_{\varepsilon } A\overline{A}^{2} }}{{2\varOmega \left( {\varOmega + 2\omega_{0} } \right)}}e^{{i\sigma T_{1} }} + \frac{7}{16}\eta_{\varepsilon } P_{\varepsilon } A^{3} e^{{ - i\sigma T_{1} }} } \right) = 0. \\ \end{aligned} $$
(A20)

Taking Eq. (A2) into account, Eq. (A20) can be rewritten as

$$ \begin{aligned} 2i\omega_{0} \frac{{{\text{d}}A}}{{{\text{d}}t}} - & \frac{1}{4}\omega_{0} P\overline{A}\left( {\varOmega - 4\omega_{0} } \right)e^{{i\left( {\varOmega - 2\omega_{0} } \right)t}} - \frac{1}{4}\beta^{2} A + i\omega_{0} \beta A + 3\eta A^{2} \overline{A} \\ + & \frac{1}{16}\omega_{0}^{2} p^{2} A + \frac{{\omega_{0}^{4} p^{2} A}}{{4\varOmega \left( {\varOmega + 2\omega_{0} } \right)}} - \frac{3i}{{2\omega_{0} }}\beta \eta A^{2} \overline{A} - \frac{15}{{8\omega_{0}^{2} }}\eta^{2} A^{3} \overline{A}^{2} \\ + & \left( {\frac{{3\omega_{0}^{2} }}{{2\varOmega \left( {\varOmega + 2\omega_{0} } \right)}} - \frac{3}{8}} \right)\eta PA\overline{A}^{2} e^{{i\left( {\varOmega - 2\omega_{0} } \right)t}} + \frac{7}{16}\eta PA^{3} e^{{ - i\left( {\varOmega - 2\omega_{0} } \right)t}} = 0, \\ \end{aligned} $$
(A21)

where \(A\) is a function of time and can be expressed in a polar form

$$ A\left( t \right) = \frac{1}{2}a\left( t \right)e^{i\lambda \left( t \right)} , $$
(A22)

where \(a\left( t \right)\) and \(\lambda \left( t \right)\) are real. substituting Eq. (A22) into Eq. (A21), we obtain

$$ \begin{aligned} - 256\omega_{0} a\dot{\lambda } + & \left( {\omega_{0}^{2} p^{2} + \frac{{32\omega_{0}^{4} p^{2} }}{{\varOmega \left( {\varOmega + 2\omega_{0} } \right)}} - 32\beta^{2} } \right)a + 96\eta a^{3} \\ - & \frac{15}{{\omega_{0}^{2} }}\eta^{2} a^{5} + i\left( {256\omega_{0} \dot{a} + 128\omega_{0} \beta a - \frac{48}{{\omega_{0} }}\beta \eta a^{3} } \right) \\ & + \left( {\left( {\frac{{48\omega_{0}^{2} }}{{\varOmega \left( {\varOmega + 2\omega_{0} } \right)}} - 12} \right)\eta Pa^{3} - 32\omega_{0} P\left( {\varOmega - 4\omega_{0} } \right)a} \right)e^{{i\left( {\left( {\varOmega - 2\omega_{0} } \right)t - 2\lambda } \right)}} \\ + & 14\eta Pa^{3} e^{{ - i\left( {\left( {\varOmega - 2\omega_{0} } \right)t - 2\lambda } \right)}} = 0. \\ \end{aligned} $$
(A23)

Applying the transformation

$$ \tau \left( t \right) = \left( {\varOmega - 2\omega_{0} } \right)t - 2\lambda \left( t \right) $$
(A24)

into Eq. (A23) and separating the resultant real and imaginary parts, the system of equations

$$ \begin{aligned} a\dot{\tau } = & \left( {\varOmega - 2\omega_{0} - \frac{1}{16}\omega_{0} p^{2} - \frac{{\omega_{0}^{3} p^{2} }}{{4\varOmega \left( {\varOmega + 2\omega_{0} } \right)}} + \frac{1}{{4\omega_{0} }}\beta^{2} } \right)a + \frac{15}{{128\omega_{0}^{3} }}\eta^{2} a^{2} \\ & \;\; - \frac{3}{{4\omega_{0} }}\eta a^{3} - \left( {\left( {\frac{{3\omega_{0} }}{{8\varOmega \left( {\varOmega + 2\omega_{0} } \right)}} + \frac{1}{{64\omega_{0} }}} \right)\eta Pa^{3} - \frac{1}{4}P\left( {\varOmega - 4\omega_{0} } \right)a} \right)\cos \left( \tau \right) = 0, \\ \end{aligned} $$
(A25)
$$ \begin{aligned} \dot{a} = & - \frac{1}{2}\beta a + \frac{3}{{16\omega_{0}^{2} }}\beta \eta a^{3} \\ & \;\; - \left( {\left( {\frac{{3\omega_{0} }}{{16\varOmega \left( {\varOmega + 2\omega_{0} } \right)}} - \frac{13}{{128\omega_{0} }}} \right)\eta Pa^{3} - \frac{1}{8}P\left( {\varOmega - 4\omega_{0} } \right)a} \right)\sin \left( \tau \right), \\ \end{aligned} $$
(A26)

is obtained. Consequently, solving Eqs. (A25) and (A26) for the steady state (\(\dot{a} = \dot{\tau } = 0\)), the frequency response Eq. (44) is obtained (with symbol \(a\) replaced by \(A\) for consistency with the results obtained by the MVA).

Appendix B: second approximation of MMS assuming Duffing nonlinearity \(\eta\) to be \(O(\varepsilon^{2} )\)

To the second approximation of the MMS, assuming \(\eta\) is of order \(\varepsilon^{2}\), the equation of motion is scaled as

$$ \ddot{u} + \varepsilon \beta_{\varepsilon } \dot{u} + \omega_{0}^{2} \left( {1 + \varepsilon P_{\varepsilon } \cos \left( {\varOmega t} \right)} \right)u + \varepsilon^{2} \eta_{\varepsilon } u^{3} = 0, $$
(B1)

where \(\varepsilon^{2} \eta_{\varepsilon } = \eta\). Considering the system parameters to be of different orders of ε has been used commonly in the literature for various problems [25, 32, 33]. Here, \(\eta_{\varepsilon }\) is considered to be of order \(\varepsilon^{2}\), which only implies the degree of smallness for Duffing nonlinearity. Considering Eqs. (A3)–(A6) and following a similar approach, Eq. (A7) still holds true for coefficients of order \(\varepsilon^{0}\), while the equations representing coefficients of order \(\varepsilon\) and \(\varepsilon^{2}\) change to

$$ D_{0}^{2} u_{1} + \omega_{0}^{2} u_{1} = - 2D_{0} D_{1} u_{0} - \beta_{\varepsilon } D_{0} u_{0} - \frac{1}{2}\omega_{0}^{2} P_{\varepsilon } \left( {e^{{i\varOmega T_{0} }} + e^{{ - i\varOmega T_{0} }} } \right)u_{0} , $$
(B2)
$$ \begin{aligned} D_{0}^{2} u_{2} + \omega_{0}^{2} u_{2} = & - D_{1}^{2} u_{0} - 2D_{0} D_{2} u_{0} - 2D_{0} D_{1} u_{1} \\ & - \beta_{\varepsilon } \left( {D_{1} u_{0} + D_{0} u_{1} } \right) - \frac{1}{2}\omega_{0}^{2} P_{\varepsilon } \left( {e^{{i\varOmega T_{0} }} + e^{{ - i\varOmega T_{0} }} } \right)u_{1} - \eta_{\varepsilon } u_{0}^{3} , \\ \end{aligned} $$
(B3)

respectively. The particular solution for \(u_{1}\) in Eq. (B2) is

$$ u_{1} = \frac{{\omega_{0}^{2} P_{\varepsilon } A}}{{2\varOmega \left( {\varOmega + 2\omega_{0} } \right)}}e^{{i\left( {\varOmega + \omega_{0} } \right)T_{0} }} + CC. $$
(B4)

Following an approach similar to that of Eqs. (A14)–(A22) in Appendix A, the modulation equation is obtained as

$$ \begin{aligned} 12\eta a^{3} - & 4\omega_{0} Pa\left( {\varOmega - 4\omega_{0} } \right)e^{{i\left( {\left( {\varOmega - 2\omega_{0} } \right)t - 2\lambda } \right)}} + 32i\omega_{0} \dot{a} + 16i\omega_{0} \beta a \\ & + \omega_{0}^{2} p^{2} a + \frac{{4\omega_{0}^{4} p^{2} a}}{{\varOmega \left( {\varOmega + 2\omega_{0} } \right)}} - 4\beta^{2} a - 32a\omega_{0} \dot{\lambda } = 0. \\ \end{aligned} $$
(B5)

Consequently, applying the transformation (A24), the system of equations

$$ \begin{aligned} a\dot{\tau } = & a\left( {\varOmega - 2\omega_{0} } \right) - \frac{{3\eta a^{3} }}{{4\omega_{0} }} - \frac{1}{16}\omega_{0} p^{2} a - \frac{{\omega_{0}^{3} p^{2} a}}{{4\varOmega \left( {\varOmega + 2\omega_{0} } \right)}} \\ & + \frac{1}{4}\beta^{2} a + \frac{1}{2}Pa\left( {\varOmega - 4\omega_{0} } \right)\cos \left( \tau \right), \\ \end{aligned} $$
(B6)
$$ \dot{a} = - \frac{1}{2}\beta a + \frac{1}{8}Pa\left( {\varOmega - 4\omega_{0} } \right)\sin \left( \tau \right), $$
(B7)

is obtained. Solving Eqs. (B6) and (B7) for the steady state (\(\dot{a} = \dot{\tau } = 0\)), the frequency response Eq. (46) is obtained (with symbol \(a\) replaced by \(A\) for consistency with the results obtained by the MVA).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghamohammadi, M., Sorokin, V. & Mace, B. Dynamic analysis of the response of Duffing-type oscillators subject to interacting parametric and external excitations. Nonlinear Dyn 107, 99–120 (2022). https://doi.org/10.1007/s11071-021-06972-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06972-5

Keywords

Navigation