Skip to main content
Log in

Nonlinear dynamics of coupling rub-impact of double translational joints with subsidence considering the flexibility of piston rod

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, based on the nine kinds of rub-impact scenarios of one single translational joint, we discuss 42 kinds of coupling rub-impact scenarios of double translational joints with subsidence for a triplex member including crosshead slider, piston rod, and piston slider. The two sliders are connected by a flexible piston rod. The flexible piston rod alternates between a straight rod and a S-curve rod in the rub-impact. A novel dynamic model of coupling rub-impact system with subsidence is established considering complex rub-impact scenarios and the flexibility of the piston rod. The dynamic equations are solved by the fourth-order Runge–Kutta approach. The numerical simulation results show that the subsidence has a significant effect on the rub-impact scenarios of the double translational joints, and the larger the subsidence is, the more intense the rub-impact. Moreover, the stability of coupling rub-impact system with double translational joints is investigated. The chaotic phenomenon of the coupling rub-impact system can be observed in the phase space trajectory. The existence of chaotic behavior is further confirmed by the Poincaré section method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Brogliato, B.: Feedback control of multibody systems with joint clearance and dynamic backlash: a tutorial. Multibody Syst. Dyn. 42(3), 283–315 (2018). https://doi.org/10.1007/s11044-017-9585-4

    Article  MathSciNet  MATH  Google Scholar 

  2. Varedi-Koulaei, S.M., Daniali, H.M., Farajtabar, M., Fathi, B., Shafiee-Ashtiani, M.: Reducing the undesirable effects of joints clearance on the behavior of the planar 3-RRR parallel manipulators. Nonlinear Dyn. 86(2), 1007–1022 (2016). https://doi.org/10.1007/s11071-016-2942-7

    Article  Google Scholar 

  3. Erkaya, S., Dogan, S., Ulus, S.: Effects of joint clearance on the dynamics of a partly compliant mechanism: numerical and experimental studies. Mech. Mach. Theory 88, 125–140 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.02.007

    Article  Google Scholar 

  4. Pereira, C., Ambrosio, J., Ramalho, A.: Dynamics of chain drives using a generalized revolute clearance joint formulation. Mech. Mach. Theory 92, 64–85 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.04.021

    Article  Google Scholar 

  5. Pereira, C., Ramalho, A., Ambrosio, J.: An enhanced cylindrical contact force model. Multibody Syst. Dyn. 35(3), 277–298 (2015). https://doi.org/10.1007/s11044-015-9463-x

    Article  MATH  Google Scholar 

  6. Marques, F., Flores, P., Pimenta Claro, J.C., Lankarani, H.M.: A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016). https://doi.org/10.1007/s11071-016-2999-3

    Article  MathSciNet  Google Scholar 

  7. Daniel, G.B., Machado, T.H., Cavalca, K.L.: Investigation on the influence of the cavitation boundaries on the dynamic behavior of planar mechanical systems with hydrodynamic bearings. Mech. Mach. Theory 99, 19–36 (2016). https://doi.org/10.1016/j.mechmachtheory.2015.11.019

    Article  Google Scholar 

  8. Li, P., Chen, W., Li, D., Yu, R., Zhang, W.: Wear analysis of two revolute joints with clearance in multibody systems. J. Comput. Nonlinear Dyn. (2016). https://doi.org/10.1115/1.4030539

    Article  Google Scholar 

  9. Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.12.002

    Article  Google Scholar 

  10. Akhadkar, N., Acary, V., Brogliato, B.: Multibody systems with 3D revolute joints with clearances: an industrial case study with an experimental validation. Multibody Syst. Dyn. 42(3), 249–282 (2018). https://doi.org/10.1007/s11044-017-9584-5

    Article  MATH  Google Scholar 

  11. Ambrosio, J., Pombo, J.: A unified formulation for mechanical joints with and without clearances/bushings and/or stops in the framework of multibody systems. Multibody Syst. Dyn. 42(3), 317–345 (2018). https://doi.org/10.1007/s11044-018-9613-z

    Article  MathSciNet  MATH  Google Scholar 

  12. Awrejcewicz, J., Birnir, B., Sanjuan, M.A.F.: Preface to the special issue: nonlinear systems theory and applications in engineering, control and life sciences. Nonlinear Dyn. 97(3), 1783–1784 (2019). https://doi.org/10.1007/s11071-019-05115-1

    Article  Google Scholar 

  13. Awrejcewicz, J., Starosta, R., Sypniewska-Kaminska, G.: Complexity of resonances exhibited by a nonlinear micromechanical gyroscope: an analytical study. Nonlinear Dyn. 97(3), 1819–1836 (2019). https://doi.org/10.1007/s11071-018-4530-5

    Article  Google Scholar 

  14. Erkaya, S.: Clearance-induced vibration responses of mechanical systems: computational and experimental investigations. J. Braz. Soc. Mech. Sci. Eng. 40(2), 90 (2018). https://doi.org/10.1007/s40430-018-1015-x

    Article  Google Scholar 

  15. Li, D., Liu, S., Zhang, H.: A method of anomaly detection and fault diagnosis with online adaptive learning under small training samples. Pattern Recognit. 64, 374–385 (2017). https://doi.org/10.1016/j.patcog.2016.11.026

    Article  Google Scholar 

  16. Ben Abdallah, M.A., Khemili, I., Aifaoui, N.: Numerical investigation of a flexible slider–crank mechanism with multijoints with clearance. Multibody Syst. Dyn. 38(2), 173–199 (2016). https://doi.org/10.1007/s11044-016-9526-7

    Article  Google Scholar 

  17. Farahan, S.B., Ghazavi, M.R., Rahmanian, S.: Bifurcation in a planar four-bar mechanism with revolute clearance joint. Nonlinear Dyn. 87(2), 955–973 (2017). https://doi.org/10.1007/s11071-016-3091-8

    Article  Google Scholar 

  18. Erkaya, S.: Determining power consumption using neural model in multibody systems with clearance and flexible joints. Multibody Syst. Dyn. 47(2), 165–181 (2019). https://doi.org/10.1007/s11044-019-09682-4

    Article  MATH  Google Scholar 

  19. Erkaya, S., Dogan, S., Sefkatlioglu, E.: Analysis of the joint clearance effects on a compliant spatial mechanism. Mech. Mach. Theory 104, 255–273 (2016). https://doi.org/10.1016/j.mechmachtheory.2016.06.009

    Article  Google Scholar 

  20. Flores, P., Ambrosio, J., Claro, J.C.P., Lankarani, H.M.: Dynamics of multibody systems with spherical clearance joints. J. Comput. Nonlinear Dyn. 1(3), 240–247 (2006). https://doi.org/10.1115/1.2198877

    Article  MATH  Google Scholar 

  21. Marques, F., Isaac, F., Dourado, N., Souto, A.P., Flores, P., Lankarani, H.M.: A study on the dynamics of spatial mechanisms with frictional spherical clearance joints. J. Comput. Nonlinear Dyn. (2017). https://doi.org/10.1115/1.4036480

    Article  Google Scholar 

  22. Tian, Q., Zhang, Y., Chen, L., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87(13–14), 913–929 (2009). https://doi.org/10.1016/j.compstruc.2009.03.006

    Article  Google Scholar 

  23. Marques, F., Isaac, F., Dourado, N., Flores, P.: An enhanced formulation to model spatial revolute joints with radial and axial clearances. Mech. Mach. Theory 116, 123–144 (2017). https://doi.org/10.1016/j.mechmachtheory.2017.05.020

    Article  Google Scholar 

  24. Flores, P., Ambrosio, J., Claro, J.C.P., Lankarani, H.M.: Translational joints with clearance in rigid multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011007-011001–011007-011010 (2008). https://doi.org/10.1115/1.2802113

    Article  Google Scholar 

  25. Stoenescu, E.D., Marghitu, D.B.: Dynamic analysis of a planar rigid-link mechanism with rotating slider joint and clearance. J. Sound Vib. 266(2), 394–404 (2003). https://doi.org/10.1016/s0022-460x(03)00053-1

    Article  Google Scholar 

  26. Flores, P., Ambrosio, J., Claro, J.C.P., Lankarani, H.M.: Translational joints with clearance in rigid multibody systems. J. Comput. Nonlinear Dyn. 3(1), 1–10 (2008). https://doi.org/10.1115/1.2802113

    Article  Google Scholar 

  27. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23(2), 165–190 (2010). https://doi.org/10.1007/s11044-009-9178-y

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhuang, F.F., Wang, Q.: Modeling and simulation of the nonsmooth planar rigid multibody systems with frictional translational joints. Multibody Syst. Dyn. 29(4), 403–423 (2013). https://doi.org/10.1007/s11044-012-9328-5

    Article  MathSciNet  Google Scholar 

  29. Zhang, J., Wang, Q.: Modeling and simulation of a frictional translational joint with a flexible slider and clearance. Multibody Syst. Dyn. 38(4), 367–389 (2016). https://doi.org/10.1007/s11044-015-9474-7

    Article  MathSciNet  MATH  Google Scholar 

  30. Cavalieri, F.J., Cardona, A.: Non-smooth model of a frictionless and dry three-dimensional revolute joint with clearance for multibody system dynamics. Mech. Mach. Theory 121, 335–354 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.09.018

    Article  Google Scholar 

  31. Wu, L., Marghitu, D.B., Zhao, J.: Nonlinear dynamics response of a planar mechanism with two driving links and prismatic pair clearance. Math. Probl. Eng. 2017, 1–12 (2017). https://doi.org/10.1155/2017/4295805

    Article  Google Scholar 

  32. Xiao, S., Liu, S., Jiang, F., Song, M., Cheng, S.: Nonlinear dynamic response of reciprocating compressor system with rub-impact fault caused by subsidence. J. Vib. Control 25(11), 1737–1751 (2019). https://doi.org/10.1177/1077546319835281

    Article  MathSciNet  Google Scholar 

  33. Xiao, S., Zhang, H., Liu, S., Jiang, F., Song, M.: Dynamic behavior analysis of reciprocating compressor with subsidence fault considering flexible piston rod. J. Mech. Sci. Technol. 32(9), 4103–4124 (2018). https://doi.org/10.1007/s12206-018-0809-1

    Article  Google Scholar 

  34. Zhao, H., Wang, J., Lee, J., Li, Y.: A compound interpolation envelope local mean decomposition and its application for fault diagnosis of reciprocating compressors. Mech. Syst. Signal Process. 110, 273–295 (2018). https://doi.org/10.1016/j.ymssp.2018.03.035

    Article  Google Scholar 

  35. Xiao, S., Liu, S., Cheng, S., Xue, X., Song, M., Sun, X.: Dynamic analysis of reciprocating compressor with clearance and subsidence. J. Vibroeng. 19(7), 5061–5085 (2017). https://doi.org/10.21595/jve.2017.18771

    Article  Google Scholar 

  36. Flores, P., Ambrósio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12(1), 47–74 (2004)

    Article  Google Scholar 

  37. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112(3), 369–376 (1990)

    Article  Google Scholar 

  38. Bai, Z.F., Zhao, J.J., Chen, J., Zhao, Y.: Design optimization of dual-axis driving mechanism for satellite antenna with two planar revolute clearance joints. Acta Astronaut. 144, 80–89 (2018). https://doi.org/10.1016/j.actaastro.2017.11.015

    Article  Google Scholar 

  39. Erkaya, S.: Experimental investigation of flexible connection and clearance joint effects on the vibration responses of mechanisms. Mech. Mach. Theory 121, 515–529 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.11.014

    Article  Google Scholar 

  40. Song, Z., Yang, X., Huang, H., Li, B.: Dynamic analysis of planar mechanisms with revolute clearance joints based on two evaluation indices. Mech. Based Des. Struct. Mach. 44(3), 231–249 (2016). https://doi.org/10.1080/15397734.2015.1052147

    Article  Google Scholar 

  41. Chen, Y., Sun, Y., Chen, C.: Dynamic analysis of a planar slider-crank mechanism with clearance for a high speed and heavy load press system. Mech. Mach. Theory 98, 81–100 (2016). https://doi.org/10.1016/j.mechmachtheory.2015.12.004

    Article  Google Scholar 

  42. Chen, X., Jia, Y., Deng, Y., Wang, Q.: Dynamics behavior analysis of parallel mechanism with joint clearance and flexible links. Shock Vib. 2018(6), 1–17 (2018). https://doi.org/10.1155/2018/9430267

    Article  Google Scholar 

  43. Varedi, S.M., Daniali, H.M., Dardel, M.: Dynamic synthesis of a planar slider–crank mechanism with clearances. Nonlinear Dyn. 79(2), 1587–1600 (2015). https://doi.org/10.1007/s11071-014-1762-x

    Article  Google Scholar 

  44. Xiao, S., Liu, S., Song, M., Nie, A., Zhang, H.: Coupling rub-impact dynamics of double translational joints with subsidence for time-varying load in a planar mechanical system. Multibody Syst. Dyn. 48(4), 451–486 (2020). https://doi.org/10.1007/s11044-019-09718-9

    Article  MathSciNet  Google Scholar 

  45. Chen, J.L., Zhang, L.B., Duan, L.X., Hu, C.: Diagnosis of reciprocating compressor piston–cylinder liner wear fault based on lifting scheme packet. J. China Univ. Petrol. 35(1), 130–145 (2011)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (Grant No. 51575331), Research Project for Yong and Middle-aged Teacher in Fujian Province (Grant No. JT180601), and Young Teacher Special Project of Ningde Normal University (Grant Nos. 2018Q101, 2018ZX401, 2019ZX403). These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shulin Liu or Hongli Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. These authors contribute equally to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, S., Liu, S., Wang, H. et al. Nonlinear dynamics of coupling rub-impact of double translational joints with subsidence considering the flexibility of piston rod. Nonlinear Dyn 100, 1203–1229 (2020). https://doi.org/10.1007/s11071-020-05566-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05566-x

Keywords

Navigation