Skip to main content
Log in

Control of linear instabilities by dynamically consistent order reduction on optimally time-dependent modes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Identification and control of transient instabilities in high-dimensional dynamical systems remain a challenge because transient (non-normal) growth cannot be accurately captured by reduced-order modal analysis. Eigenvalue-based methods classify systems as stable or unstable on the sole basis of the asymptotic behavior of perturbations and therefore fail to predict any short-term characteristics of disturbances, including transient growth. In this paper, we leverage the power of the optimally time-dependent (OTD) modes, a set of time-evolving, orthonormal modes that capture directions in phase space associated with transient and persistent instabilities, to formulate a control law capable of suppressing transient and asymptotic growth around any fixed point of the governing equations. The control law is derived from a reduced-order system resulting from projecting the evolving linearized dynamics onto the OTD modes and enforces that the instantaneous growth of perturbations in the OTD-reduced tangent space be nil. We apply the proposed reduced-order control algorithm to several infinite-dimensional systems, including fluid flows dominated by normal and non-normal instabilities, and demonstrate unequivocal superiority of OTD control over classical modal control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Åkervik, E., Brandt, L., Henningson, D.S., Hœpffner, J., Marxen, O., Schlatter, P.: Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18, 068102 (2006)

    Article  Google Scholar 

  2. Åström, K.J., Kumar, P.R.: Control: a perspective. Automatica 50, 3–43 (2014)

    Article  MathSciNet  Google Scholar 

  3. Babaee, H., Farazmand, M., Haller, G., Sapsis, T.P.: Reduced-order description of transient instabilities and computation of finite-time Lyapunov exponents. Chaos Interdiscip. J. Nonlinear Sci. 27, 063103 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babaee, H., Sapsis, T.P.: A minimization principle for the description of modes associated with finite-time instabilities. Proc. R. Soc. A 472, 20150779 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balasubramanian, K., Sujith, R.I.: Thermoacoustic instability in a Rijke tube: non-normality and nonlinearity. Phys. Fluids 20, 044103 (2008)

    Article  MATH  Google Scholar 

  6. Bayly, B.J.: Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57, 2160 (1986)

    Article  MathSciNet  Google Scholar 

  7. Benettin, G., Galgani, L., Strelcyn, J.M.: Kolmogorov entropy and numerical experiments. Phys. Rev. A 14, 2338 (1976)

    Article  Google Scholar 

  8. Blanchard, A., Sapsis, T.P.: Analytical description of optimally time-dependent modes for reduced-order modeling of transient instabilities (2018) (Submitted to SIAM Journal on Applied Dynamical Systems)

  9. Blanchard, A., Sapsis, T.P.: Stabilization of unsteady flows by reduced-order control with optimally time-dependent modes (2018) (Submitted to Physical Review Fluids)

  10. Chandler, G.J., Kerswell, R.R.: Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow. J. Fluid Mech. 722, 554–595 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chomaz, J.M.: Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357–392 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duriez, T., Brunton, S.L., Noack, B.R.: Machine Learning Control: Taming Nonlinear Dynamics and Turbulence. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  13. Dušek, J., Le Gal, P., Fraunié, P.: A numerical and theoretical study of the first Hopf bifurcation in a cylinder wake. J. Fluid Mech. 264, 59–80 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eisenman, I.: Non-normal effects on salt finger growth. J. Phys. Oceanogr. 35, 616–627 (2005)

    Article  Google Scholar 

  15. Farazmand, M.: An adjoint-based approach for finding invariant solutions of Navier–Stokes equations. J. Fluid Mech. 795, 278–312 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Farazmand, M., Sapsis, T.P.: Dynamical indicators for the prediction of bursting phenomena in high-dimensional systems. Phys. Rev. E 94, 032212 (2016)

    Article  Google Scholar 

  17. Farrell, B.: Optimal excitation of neutral Rossby waves. J. Atmos. Sci. 45, 163–172 (1988)

    Article  Google Scholar 

  18. Fischer, P.F., Lottes, J.W., Kerkemeier, S.G.: nek5000 Web page (2008). http://nek5000.mcs.anl.gov

  19. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier–Stokes Equations and Turbulence. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  20. Giannetti, F., Luchini, P.: Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167–197 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  22. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  23. Juang, J.N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn. 8, 620–627 (1985)

    Article  MATH  Google Scholar 

  24. Lumley, J.L.: Coherent structures in turbulence. In: Meyer, R.E. (ed.) Transition and Turbulence, pp. 215–242. Academic Press, New York (1981)

    Chapter  Google Scholar 

  25. Mack, L.M.: The inviscid stability of the compressible laminar boundary layer. Space Prog. Summ. 37, 297–312 (1963)

    Google Scholar 

  26. Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26, 17–32 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. Orszag, S.A.: Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50, 689–703 (1971)

    Article  MATH  Google Scholar 

  28. Orszag, S.A., Patera, A.T.: Secondary instability of wall-bounded shear flows. J. Fluid Mech. 128, 347–385 (1983)

    Article  MATH  Google Scholar 

  29. Penland, C., Sardeshmukh, P.D.: The optimal growth of tropical sea surface temperature anomalies. J. Clim. 8, 1999–2024 (1995)

    Article  Google Scholar 

  30. Peplinski, A., Schlatter, P., Fischer, P.F., Henningson, D.S.: Stability tools for the spectral-element code Nek5000: application to jet-in-crossflow. In: Azaïez, M., El Fekih, H., Hesthaven, J.S. (eds.) Spectral and High Order Methods for Partial Differential Equations, pp. 349–359. Springer, Berlin (2014)

    Google Scholar 

  31. Pierrehumbert, R.T.: Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys. Rev. Lett. 57, 2157 (1986)

    Article  Google Scholar 

  32. Platt, N., Sirovich, L., Fitzmaurice, N.: An investigation of chaotic Kolmogorov flows. Phys. Fluids A Fluid Dyn. 3, 681–696 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Proctor, J.L., Brunton, S.L., Kutz, J.N.: Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 15, 142–161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Provansal, M., Mathis, C., Boyer, L.: Bénard-von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 1–22 (1987)

    Article  MATH  Google Scholar 

  35. Reddy, S.C., Henningson, D.S.: Energy growth in viscous channel flows. J. Fluid Mech. 252, 209–238 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurc. Chaos 15, 997–1013 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rowley, C.W., Dawson, S.T.M.: Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49, 387–417 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schmid, P.J.: Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129–162 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schmid, P.J., Brandt, L.: Analysis of fluid systems: stability, receptivity, sensitivity. Appl. Mech. Rev. 66, 024803 (2014)

    Article  Google Scholar 

  41. Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear flows. Springer, Berlin (2012)

    MATH  Google Scholar 

  42. Shimada, I., Nagashima, T.: A numerical approach to ergodic problem of dissipative dynamical systems. Prog. Theor. Phys. 61, 1605–1616 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sirovich, L.: Turbulence and the dynamics of coherent structures. Part I: coherent structures. Q. Appl. Math. 45, 561–571 (1987)

    Article  MATH  Google Scholar 

  44. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design. Wiley, New York (2007)

    MATH  Google Scholar 

  45. Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer, Berlin (2013)

    Google Scholar 

  46. Trefethen, L.N., Trefethen, A.E., Reddy, S.C., Driscoll, T.A.: Hydrodynamic stability without eigenvalues. Science 261, 578–584 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  47. Von Kármán, T.: Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1911, 509–517 (1911)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge insightful discussions with Dr. Mohammad Farazmand.

Funding

This study was supported by Army Research Office Grant W911NF-17-1-0306 and Air Force Office of Scientific Research Grant FA9550-16-1-0231.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antoine Blanchard, Saviz Mowlavi or Themistoklis P. Sapsis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanchard, A., Mowlavi, S. & Sapsis, T.P. Control of linear instabilities by dynamically consistent order reduction on optimally time-dependent modes. Nonlinear Dyn 95, 2745–2764 (2019). https://doi.org/10.1007/s11071-018-4720-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4720-1

Keywords

Navigation