Skip to main content
Log in

Pinnacle elimination and stability analyses in nonlinear oscillation of soft dielectric elastomer slide actuators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dielectric elastomers (DEs) exhibit significant potential applications as soft robots. Due to complicated electromechanical coupling behavior, DEs generate a strong nonlinear oscillation, which may induce the undesired failure and other instabilities. Based on the DE slide actuators (DESAs), we deduce a viscoelastic dynamic model by incorporating the inertial forces and viscous dampings in all three principal directions. Numerically, calculations are utilized to detect the dynamic properties of the DESA. By employing the established model, the special phenomenon of pinnacle elimination in nonlinear oscillation is achieved. The dynamic loss of tension instability in both two DE membranes of the DESA is also analyzed. Effects of the voltage amplitude, the mass bar, the length ratio between two membranes, and the prestretches of DEs are considered and discussed, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000)

    Article  Google Scholar 

  2. Carpi, F., Bauer, S., Rossi, D.D.: Stretching dielectric elastomer performance. Science 330, 1759–1761 (2010)

    Article  Google Scholar 

  3. Brochu, P., Pei, Q.: Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31, 10–36 (2010)

    Article  Google Scholar 

  4. Zurlo, G., Destrade, M., DeTommasi, D., Puglisi, G.: Catastrophic thinning of dielectric elastomers. Phys Rev Lett 118, 078001 (2017)

    Article  Google Scholar 

  5. Suo, Z.: Theory of dielectric elastomers. Acta Mech Solida Sin 23, 549–578 (2010)

    Article  Google Scholar 

  6. Keplinger, C., Li, T., Baumgartner, R., Suo, Z., Bauer, S.: Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter 8, 285–288 (2012)

    Article  Google Scholar 

  7. Pei, Q., Pelrine, R., Stanford, S., Kornbluh, R., Rosenthal, M.: Electroelastomer rolls and their application for biomimetic walking robots. Synth Met 135–136, 129–131 (2003)

    Article  Google Scholar 

  8. Kovacs, G., Lochmatter, P., Wissler, M.: An arm wrestling robot driven by dielectric elastomer actuators. Smart Mater Struct 16, S306–S317 (2007)

    Article  Google Scholar 

  9. Henke, E.-F.M., Schlatter, S., Anderson, I.A.: Soft dielectric elastomer oscillators driving bioinspired robots. Soft Robot 4, 353–366 (2017)

    Article  Google Scholar 

  10. Zhao, J., Niu, J., McCoul, D., Ren, Z., Pei, Q.: Phenomena of nonlinear oscillation and special resonance of a dielectric elastomer minimum energy structure rotary joint. Appl Phys Lett 106, 133504 (2015)

    Article  Google Scholar 

  11. Carpi, F., Frediani, G., Turco, S., Rossi, D.D.: Bioinspired tunable lens with muscle-like electroactive elastomers. Adv Funct Mater 21, 4152–4158 (2011)

    Article  Google Scholar 

  12. Tang, D., Lim, C.W., Hong, L., Jiang, J., Lai, S.K.: Analytical asymptotic approximations for large amplitude nonlinear free vibration of a dielectric elastomer balloon. Nonlinear Dyn 88, 2255–2264 (2017)

    Article  Google Scholar 

  13. Keplinger, C., Sun, J.-Y., Foo, C.C., Rothemund, P., Whitesides, G.M., Suo, Z.: Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013)

    Article  Google Scholar 

  14. Zhang, J., Li, B., Chen, H., Pei, Q.: Dissipative performance of dielectric elastomers under various voltage waveforms. Soft Matter 12, 2348–2356 (2016)

    Article  Google Scholar 

  15. Fox, J.W., Goulbourne, N.: On the dynamic electromechanical loading of dielectric elastomer membranes. J Mech Phys Solids 56, 2669–2686 (2008)

    Article  Google Scholar 

  16. Lu, Z., Shrestha, M., Lau, G.-K.: Electrically tunable and broader-band sound absorption by using micro-perforated dielectric elastomer actuator. Appl Phys Lett 110, 182901 (2017)

    Article  Google Scholar 

  17. Zhu, J.: Instability in nonlinear oscillation of dielectric elastomers. J Appl Mech 82, 061001 (2015)

    Article  Google Scholar 

  18. Zhang, J., Chen, H., Li, B., McCoul, D., Pei, Q.: Coupled nonlinear oscillation and stability evolution of viscoelastic dielectric elastomers. Soft Matter 11, 7483–7493 (2015)

    Article  Google Scholar 

  19. York, A., Dunn, J., Seelecke, S.: Experimental characterization of the hysteretic and rate-dependent electromechanical behavior of dielectric electroactive polymer actuators. Smart Mater Struct 19, 094014 (2010)

    Article  Google Scholar 

  20. Wissler, M., Mazza, E.: Modeling and simulation of dielectric elastomer actuators. Smart Mater Struct 14, 1396–1402 (2005)

    Article  Google Scholar 

  21. Biggs, S.J., Hitchcock, R.N.: Artificial muscle actuators for haptic displays: system design to match the dynamics and tactile sensitivity of the human fingerpad. Proc SPIE 7642, 76420I (2010)

    Article  Google Scholar 

  22. Li, T., Qu, S., Yang, W.: Electromechanical and dynamic analyses of tunable dielectric elastomer resonator. Int J Solids Struct 49, 3754–3761 (2012)

    Article  Google Scholar 

  23. Li, T., Zou, Z., Mao, G., Qu, S.: Electromechanical bistable behavior of a novel dielectric elastomer actuator. J Appl Mech 81, 041019 (2014)

    Article  Google Scholar 

  24. Sun, W., Liu, F., Ma, Z., Li, C., Zhou, J.: Soft mobile robots driven by foldable dielectric elastomer actuators. J Appl Phys 120, 084901 (2016)

    Article  Google Scholar 

  25. Liu, L., Chen, H., Sheng, J., Zhang, J., Wang, Y., Jia, S.: Experimental study on the dynamic response of in-plane deformation of dielectric elastomer under alternating electric load. Smart Mater Struct 23, 025037 (2014)

    Article  Google Scholar 

  26. Liu, L., Li, B., Sun, W., Chen, H., Li, D.: Viscoelastic effect and creep elimination of dielectric elastomers in adversarial resonance. J Appl Phys 120, 164502 (2016)

    Article  Google Scholar 

  27. Zhou, J., Jiang, L., Khayat, R.E.: Viscoelastic effects on frequency tuning of a dielectric elastomer membrane resonator. J Appl Phys 115, 124106 (2014)

    Article  Google Scholar 

  28. Zhang, J., Chen, H., Li, D.: Method to control dynamic snap-through instability of dielectric elastomers. Phys Rev Appl 6, 064012 (2016)

    Article  Google Scholar 

  29. Eder-Goy, D., Zhao, Y., Xu, B.-X.: Dynamic pull-in instability of a prestretched viscous dielectric elastomer under electric loading. Acta Mech 228, 4293–4307 (2017)

    Article  MathSciNet  Google Scholar 

  30. Foo, C.C., Cai, S., Koh, S.J.A., Bauer, S., Suo, Z.: Model of dissipative dielectric elastomers. J Appl Phys 111, 034102 (2012)

    Article  Google Scholar 

  31. Hong, W.: Modeling viscoelastic dielectrics. J Mech Phys Solids 59, 637–650 (2011)

    Article  MathSciNet  Google Scholar 

  32. Khan, K.A., Wafai, H., Sayed, T.E.: A variational constitutive framework for the nonlinear viscoelastic response of a dielectric elastomer. Comput Mech 52, 345–360 (2013)

    Article  MathSciNet  Google Scholar 

  33. Chen, X., Jiang, T., Wang, Z.L.: Modeling a dielectric elastomer as driven by triboelectric nanogenerator. Appl Phys Lett 110, 033505 (2017)

    Article  Google Scholar 

  34. Kiser, J., Manning, M., Adler, D., Breuer, K.: A reduced order model for dielectric elastomer actuators over a range of frequencies and prestrains. Appl Phys Lett 109, 133506 (2016)

    Article  Google Scholar 

  35. Zhang, J., Ru, J., Chen, H., Li, D., Lu, J.: Viscoelastic creep and relaxation of dielectric elastomers characterized by a Kelvin–Voigt–Maxwell model. Appl Phys Lett 110, 044104 (2017)

    Article  Google Scholar 

  36. Silberstein, M.N., Boyce, M.C.: Constitutive modeling of the rate, temperature, and hydration dependent deformation response of Nafion to monotonic and cyclic loading. J Power Sources 195, 5692–5706 (2010)

    Article  Google Scholar 

  37. Gent, A.N.: A new constitutive relation for rubber. Rubber Chem Technol 69, 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  38. Dai, H.L., Wang, L.: Nonlinear oscillations of a dielectric elastomer membrane subjected to in-plane stretching. Nonlinear Dyn 82, 1709–1719 (2015)

    Article  Google Scholar 

  39. Zhang, J., Zhao, J., Chen, H., Li, D.: Dynamic analyses of viscoelastic dielectric elastomers incorporating viscous damping effect. Smart Mater Struct 26, 015010 (2017)

    Article  Google Scholar 

  40. Xu, B.-X., Mueller, R., Theis, A., Klassen, M., Gross, D.: Dynamic analysis of dielectric elastomer actuators. Appl Phys Lett 100, 112903 (2012)

    Article  Google Scholar 

  41. Zhang, J., Chen, H., Li, D.: Nonlinear dynamical model of a soft viscoelastic dielectric elastomer. Phys Rev Appl 8, 064016 (2017)

    Article  Google Scholar 

  42. Wang, H., Lei, M., Cai, S.: Viscoelastic deformation of a dielectric elastomer membrane subject to electromechanical loads. J Appl Phys 113, 213508 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Postdoctoral Program for Innovative Talents of China (Grant No. BX201600126) and the China Postdoctoral Science Foundation (Grant No. 2016M600783).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hualing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Chen, H. & Li, D. Pinnacle elimination and stability analyses in nonlinear oscillation of soft dielectric elastomer slide actuators. Nonlinear Dyn 94, 1907–1920 (2018). https://doi.org/10.1007/s11071-018-4464-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4464-y

Keywords

Navigation