Skip to main content
Log in

Elimination of spiral waves in excitable media by magnetic induction

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The formation of spiral waves in excitable media is a fascinating example of the beauty of nonlinear dynamics in spatiotemporal systems. Apart from the beauty of the patterns, the subject also has many practical application. For example, the emergence of spiral waves in cardiac tissue can lead to arrhythmias. Cortical spiral waves are also involved in epileptic seizures. Motivated by this, we here study the effects of magnetic induction on the formation of spiral waves in excitable media. An external sinusoidal magnetic induction with different amplitudes and angular frequencies is applied in order to study whether spiral waves could be eliminated. We use a network of coupled neurons as a model for the excitable medium. The four-variable magnetic Hindmarsh–Rose model is used for the local dynamics of each isolated neuron. The distribution of the cell membrane potential over time, affected by magnetic induction, is determined and the results are depicted as snapshots of the 2D network. Our research reveals that the continuance of rotating spiral seeds is impaired by high-amplitude magnetic induction. Moreover, we show that low-frequency induction is not capable of breaking the reorganizing rhythm of the spiral seeds, while much higher frequencies can be too fast to overcome this special rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goldenfeld, N., Kadanoff, L.P.: Simple lessons from complexity. Science 284, 87–89 (1999)

    Article  Google Scholar 

  2. Gell-Mann, M.: Simplicity and complexity in the description of nature. Eng. Sci. 51, 2–9 (1988)

    Google Scholar 

  3. Perc, M.: Stability of subsystem solutions in agent-based models. Eur. J. Phys. 39, 014001 (2017)

    Article  Google Scholar 

  4. Holovatch, Y., Kenna, R., Thurner, S.: Complex systems: physics beyond physics. Eur. J. Phys. 38(2), 023002 (2017)

    Article  Google Scholar 

  5. Guo, S., Xu, Y., Wang, C., Jin, W., Hobiny, A., Ma, J.: Collective response, synapse coupling and field coupling in neuronal network. Chaos Solitons Fractals 105, 120–127 (2017)

    Article  MathSciNet  Google Scholar 

  6. Wu, F., Wang, Y., Ma, J., Jin, W., Hobiny, A.: Multi-channels coupling-induced pattern transition in a tri-layer neuronal network. Physica A 493, 54–68 (2018)

    Article  MathSciNet  Google Scholar 

  7. Yilmaz, E., Ozer, M., Baysal, V., Perc, M.: Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Sci. Rep. 6, 30914 (2016)

    Article  Google Scholar 

  8. Li, X., Rakkiyappan, R., Sakthivel, N.: Non-fragile synchronization control for markovian jumping complex dynamical networks with probabilistic time-varying coupling delays. Asian J. Control 17, 1678–1695 (2015)

    Article  MathSciNet  Google Scholar 

  9. Li, X., Fu, X.: Synchronization of chaotic delayed neural networks with impulsive and stochastic perturbations. Commun. Nonlinear Sci. Numer. Simul. 16, 885–894 (2011)

    Article  MathSciNet  Google Scholar 

  10. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)

    Article  MathSciNet  Google Scholar 

  11. Gosak, M., Markovič, R., Dolenšek, J., Rupnik, M.S., Marhl, M., Stožer, A., Perc, M.: Network science of biological systems at different scales: a review. Phys. Life Rev. 24, 118–135 (2018)

    Article  Google Scholar 

  12. Gosak, M., Markovič, R., Dolenšek, J., Rupnik, M.S., Marhl, M., Stožer, A., Perc, M.: Loosening the shackles of scientific disciplines with network science: reply to comments on network science of biological systems at different scales: a review. Phys. Life Rev. 24, 162–167 (2018)

    Article  Google Scholar 

  13. Milton, J., Jung, P.: Epilepsy as a Dynamic Disease. Springer, Berlin (2013)

    MATH  Google Scholar 

  14. Xu, Y., Jia, Y., Ma, J., Hayat, T., Alsaedi, A.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8, 1349 (2018)

    Article  Google Scholar 

  15. Wang, C., Ma, J.: A review and guidance for pattern selection in spatiotemporal system. Int. J. Mod. Phys. B 32, 1830003 (2018)

    Article  MathSciNet  Google Scholar 

  16. Mvogo, A., Takembo, C.N., Fouda, H.P.E., Kofané, T.C.: Pattern formation in diffusive excitable systems under magnetic flow effects. Phys. Lett. A 381, 2264–2271 (2017)

    Article  MathSciNet  Google Scholar 

  17. Takembo, C.N., Mvogo, A., Ekobena Fouda, H.P., Kofané, T.C.: Modulated wave formation in myocardial cells under electromagnetic radiation. Int. J. Mod. Phys. B 32, 1850165 (2018)

    Article  MathSciNet  Google Scholar 

  18. Xiang, W., Huangpu, Y.: Second-order terminal sliding mode controller for a class of chaotic systems with unmatched uncertainties. Commun. Nonlinear Sci. Numer. Simul. 15, 3241–3247 (2010)

    Article  MathSciNet  Google Scholar 

  19. Sinha, S., Sridhar, S.: Patterns in Excitable Media: Genesis, Dynamics, and Control. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  20. Zhang, J., Tang, J., Ma, J., Luo, J.M., Yang, X.Q.: The dynamics of spiral tip adjacent to inhomogeneity in cardiac tissue. Physica A 491, 340–346 (2018)

    Article  MathSciNet  Google Scholar 

  21. Banerjee, M., Ghorai, S., Mukherjee, N.: Approximated spiral and target patterns in Bazykins prey-predator model: Multiscale perturbation analysis. Int. J. Bifurc. Chaos 27, 1750038 (2017)

    Article  MathSciNet  Google Scholar 

  22. Woo, S.-J., Lee, J., Lee, K.J.: Spiral waves in a coupled network of sine-circle maps. Phys. Rev. E 68, 016208 (2003)

    Article  Google Scholar 

  23. Hu, B., Ma, J., Tang, J.: Selection of multiarmed spiral waves in a regular network of neurons. PLoS ONE 8, e69251 (2013)

    Article  Google Scholar 

  24. Li, F., Ma, J.: Pattern selection in network of coupled multi-scroll attractors. PLoS ONE 11(4), e0154282 (2016)

    Article  Google Scholar 

  25. Perc, M.: Effects of small-world connectivity on noise-induced temporal and spatial order in neural media. Chaos Solitons Fractals 31, 280–291 (2007)

    Article  MathSciNet  Google Scholar 

  26. Panfilov, A.V., Müller, S.C., Zykov, V.S., Keener, J.P.: Elimination of spiral waves in cardiac tissue by multiple electrical shocks. Phys. Rev. E 61, 4644–4647 (2000)

    Article  Google Scholar 

  27. Pertsov, A.M., Davidenko, J.M., Salomonsz, R., Baxter, W.T., Jalife, J.: Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circ. Res. 72, 631–650 (1993)

    Article  Google Scholar 

  28. Cherry, E.M., Fenton, F.H., Krogh-Madsen, T., Luther, S., Parlitz, U.: Introduction to focus issue complex cardiac dynamics (2017)

  29. Cherry, E.M., Fenton, F.H.: Visualization of spiral and scroll waves in simulated and experimental cardiac tissue. New J. Phys. 10, 125016 (2008)

    Article  Google Scholar 

  30. Christini, D.J., Glass, L.: Introduction: mapping and control of complex cardiac arrhythmias. Chaos 12, 732–739 (2002)

    Article  Google Scholar 

  31. Gray, R.A., Pertsov, A.M., Jalife, J.: Spatial and temporal organization during cardiac fibrillation. Nature 392, 75 (1998)

    Article  Google Scholar 

  32. Takagaki, K., Zhang, C., Wu, J.-Y., Ohl, F.W.: Flow detection of propagating waves with temporospatial correlation of activity. J. Neurosci. Methods 200, 207–218 (2011)

    Article  Google Scholar 

  33. Schiff, S.J., Huang, X., Wu, J.-Y.: Dynamical evolution of spatiotemporal patterns in mammalian middle cortex. BMC Neurosci. 8, P61 (2007)

    Article  Google Scholar 

  34. Li, Y., Oku, M., He, G., Aihara, K.: Elimination of spiral waves in a locally connected chaotic neural network by a dynamic phase space constraint. Neural Netw. 88, 9–21 (2017)

    Article  Google Scholar 

  35. Ge, M., Jia, Y., Xu, Y., Yang, L.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91, 515–523 (2018)

    Article  Google Scholar 

  36. Li, J., Liu, S., Liu, W., Yu, Y., Wu, Y.: Suppression of firing activities in neuron and neurons of network induced by electromagnetic radiation. Nonlinear Dyn. 83, 801–810 (2016)

    Article  MathSciNet  Google Scholar 

  37. Wu, F., Wang, C., Xu, Y., Ma, J.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6, 28 (2016)

    Article  Google Scholar 

  38. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Article  Google Scholar 

  39. Ma, J., Mi, L., Zhou, P., Xu, Y., Hayat, T.: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321–328 (2017)

    MathSciNet  Google Scholar 

  40. Perez-Olivas, H., Cordova-Fraga, T., Gómez-Aguilar, F., Rosas-Padilla, E., Lopez-Briones, S., Espinoza-García, A., Villagómez-Castro, J., Bernal-Alvarado, J., Sosa-Aquino, M.: Magnetic exposure system to stimulate human lymphocytes proliferation. In: AIP Conference Proceedings, Volume 1494, pp. 146–148. AIP (2012)

  41. Rastogi, P., Lee, E., Hadimani, R.L., Jiles, D.C.: Transcranial magnetic stimulation-coil design with improved focality. AIP Adv. 7, 056705 (2017)

    Article  Google Scholar 

  42. Hindmarsh, J., Rose, R.: A model of the nerve impulse using two first-order differential equations. Nature 296, 162 (1982)

    Article  Google Scholar 

  43. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  44. Wu, J., Xu, Y., Ma, J.: Lévy noise improves the electrical activity in a neuron under electromagnetic radiation. PLoS ONE 12, e0174330 (2017)

    Article  Google Scholar 

  45. Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Article  Google Scholar 

  46. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  47. Li, X., Rakkiyappan, R., Velmurugan, G.: Dissipativity analysis of memristor-based complex-valued neural networks with time-varying delays. Inf. Sci. 294, 645–665 (2015)

    Article  MathSciNet  Google Scholar 

  48. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80 (2008)

    Article  Google Scholar 

  49. Rakkiyappan, R., Sivasamy, R., Li, X.: Synchronization of identical and nonidentical memristor-based chaotic systems via active backstepping control technique. Circuits Syst. Signal Process. 34, 763–778 (2015)

    Article  Google Scholar 

  50. Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.J., et al.: Principles of Neural Science, vol. 4. McGraw-Hill, New York (2000)

    Google Scholar 

  51. Shu, Y., Duque, A., Yu, Y., Haider, B., McCormick, D.A.: Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. J. Neurophysiol. 97, 746–760 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

Sajad Jafari was supported by the Iran National Science Foundation (Grant No. 96000815). Matjaž Perc was supported by the Slovenian Research Agency (Grants Nos. J1-7009 and P5-0027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matjaž Perc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, Z., Jafari, S., Perc, M. et al. Elimination of spiral waves in excitable media by magnetic induction. Nonlinear Dyn 94, 679–692 (2018). https://doi.org/10.1007/s11071-018-4385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4385-9

Keywords

Navigation