Skip to main content
Log in

A digital pseudo-random number generator based on sawtooth chaotic map with a guaranteed enhanced period

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a very low complexity method is proposed to achieve a guaranteed substantial extension in the period of a popular class of chaos-based digital pseudo-random number generators (PRNGs). To this end, the relation between the chaotic PRNG and multiple recursive generators is investigated and some theorems are provided to show that how a simple recursive structure and an additive piecewise-constant perturbation inhibit unpredictable short period trajectories and ensure an a priori known long period for the chaotic PRNG. The statistical performance of the proposed PRNG is evaluated, and the results show that it is a good candidate for applications in which long-period secure pseudo-random sequence generators at a low complexity level are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Also called Bernoulli shift or Rényi map.

  2. The period of a recursion modulo \(2^r\) cannot be smaller than its period modulo 2 [36].

  3. Choosing other values for \(a_i\) rather than 1 or 0 does not have any effect on the period length if the feedback polynomial satisfies the conditions of Theorem 1, yet it may change the trajectory.

  4. It is the period of a conventional linear feedback shift register with primitive feedback polynomial.

References

  1. L’Ecuyer, P.: Uniform random number generation. Ann. Oper. Res. 53(1), 77–120 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Addabbo, T., Fort, A., Rocchi, S., Vignoli, V.: Digitized chaos for pseudo-random number generation in cryptography. In: Kocarev, L., Lian, S. (eds.) Chaos-Based Cryptography, pp. 67–97. Springer, Berlin (2011)

    Chapter  Google Scholar 

  3. Li, C., Luo, G., Qin, K., Li, C.: An image encryption scheme based on chaotic tent map. Nonlinear Dyn. 87(1), 127–133 (2017)

    Article  Google Scholar 

  4. Mazzini, G.: DS-CDMA systems using q-level m-sequences: coding map theory. IEEE Trans. Commun. 45(10), 1304–1313 (1997)

    Article  MathSciNet  Google Scholar 

  5. Addabbo, T., Alioto, M., Fort, A., Pasini, A., Rocchi, S., Vignoli, V.: A class of maximum-period nonlinear congruential generators derived from the rényi chaotic map. IEEE Trans. Circuits Syst. I 54(4), 816–828 (2007)

    Article  MathSciNet  Google Scholar 

  6. Jessa, M.: Designing security for number sequences generated by means of the sawtooth chaotic map. IEEE Trans. Circuits Syst. I 53(5), 1140–1150 (2006)

    Article  MathSciNet  Google Scholar 

  7. Zhou, Y., Hua, Z., Pun, C.-M., Chen, C.P.: Cascade chaotic system with applications. IEEE Trans. Cybernet. 45(9), 2001–2012 (2015)

    Article  Google Scholar 

  8. Özkaynak, F.: Cryptographically secure random number generator with chaotic additional input. Nonlinear Dyn. 78(3), 2015–2020 (2014)

    Article  MathSciNet  Google Scholar 

  9. Deng, Y., Hu, H., Xiong, W., Xiong, N., Liu, L.: Analysis and design of digital chaotic systems with desirable performance via feedback control. IEEE Trans. Syst. Man Cybernet. Syst. 45(8), 1187–1200 (2015)

    Article  Google Scholar 

  10. Öztürk, İ., Kılıç, R.: A novel method for producing pseudo random numbers from differential equation-based chaotic systems. Nonlinear Dyn. 80(3), 1147–1157 (2015)

    Article  MathSciNet  Google Scholar 

  11. Cong, L., Xiaofu, W.: Design and realization of an FPGA-based generator for chaotic frequency hopping sequences. IEEE Trans. Circuits Syst. I 48(5), 521–532 (2001)

    Article  Google Scholar 

  12. Murillo-Escobar, M., Cruz-Hernández, C., Cardoza-Avendaño, L., Méndez-Ramírez, R.: A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 87(1), 407–425 (2016)

    Article  MathSciNet  Google Scholar 

  13. Wang, Y., Liu, Z., Ma, J., He, H.: A pseudorandom number generator based on piecewise logistic map. Nonlinear Dyn. 83(4), 2373–2391 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Černák, J.: Digital generators of chaos. Phys. Lett. A 214(3), 151–160 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Galias, Z.: The dangers of rounding errors for simulations and analysis of nonlinear circuits and systems? And how to avoid them. IEEE Circuits Syst. Mag. 13(3), 35–52 (2013)

    Article  Google Scholar 

  16. Curiac, D.-I., et al.: Chaos-based cryptography: end of the road? In: International Conference on Emerging Security Information, Systems, and Technologies, SecureWare 2007, pp. 71–76 (2007)

  17. Li, C.-Y., Chen, Y.-H., Chang, T.-Y., Deng, L.-Y., To, K.: Period extension and randomness enhancement using high-throughput reseeding-mixing prng. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(2), 385–389 (2012)

    Article  Google Scholar 

  18. Tao, S., Ruli, W., Yixun, Y.: Perturbance-based algorithm to expand cycle length of chaotic key stream. Electron. Lett. 34(9), 873–874 (1998)

    Article  Google Scholar 

  19. Andrecut, M.: Logistic map as a random number generator. Int. J. Mod. Phys. B 12(09), 921–930 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, C., Xie, T., Liu, Q., Cheng, G.: Cryptanalyzing image encryption using chaotic logistic map. Nonlinear Dyn. 78(2), 1545–1551 (2014)

    Article  Google Scholar 

  21. García-Martínez, M., Campos-Cantón, E.: Pseudo-random bit generator based on multi-modal maps. Nonlinear Dyn. 82(4), 2119–2131 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. García-Martínez, M., Ontañón-García, L., Campos-Cantón, E., Čelikovskỳ, S.: Hyperchaotic encryption based on multi-scroll piecewise linear systems. Appl. Math. Comput. 270, 413–424 (2015)

    MathSciNet  Google Scholar 

  23. Ontanon-Garcia, L., Jimenez-Lopez, E., Campos-Cantón, E., Basin, M.: A family of hyperchaotic multi-scroll attractors in rn. Appl. Math. Comput. 233, 522–533 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Tezuka, S.: Uniform Random Numbers: Theory and Practice. Springer, Berlin (2012)

    MATH  Google Scholar 

  25. Setti, G., Mazzini, G., Rovatti, R., Callegari, S.: Statistical modeling of discrete-time chaotic processes-basic finite-dimensional tools and applications. Proc. IEEE 90(5), 662–690 (2002)

    Article  Google Scholar 

  26. Lasota, A., Mackey, M.C.: Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics. Springer, Berlin (2013)

    MATH  Google Scholar 

  27. Liu, N., Guo, D., Parr, G.: Complexity of chaotic binary sequence and precision of its numerical simulation. Nonlinear Dyn. 67(1), 549–556 (2012)

    Article  MathSciNet  Google Scholar 

  28. Werter, M.J.: An improved chaotic digital encoder. IEEE Trans. Circuits Syst. 2 Analog Digit. Signal Process. 45(2), 227–229 (1998)

    Article  Google Scholar 

  29. Kelber, K.: N-dimensional uniform probability distribution in nonlinear autoregressive filter structures. IEEE Trans. Circuits Syst. I 47(9), 1413–1417 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Penaud, S., Guittard, J., Bouysse, P., Quéré, R.: Dsp implementation of self-synchronized chaotic encoder decoder. Electron. Lett. 36(4), 365–366 (2000)

    Article  Google Scholar 

  31. Park, S.K., Miller, K.W.: Random number generators: good ones are hard to find. Commun. ACM 31(10), 1192–1201 (1988)

    Article  MathSciNet  Google Scholar 

  32. Entacher, K.: Bad subsequences of well-known linear congruential pseudorandom number generators. ACM Trans. Model. Comput. Simul. 8(1), 61–70 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ripley, B.: Thoughts on pseudorandom number generators. J. Comput. Appl. Math. 31(1), 153–163 (1990)

    Article  MATH  Google Scholar 

  34. Engstrom, H.: On sequences defined by linear recurrence relations. Trans. Am. Math. Soc. 33(1), 210–218 (1931)

  35. Barnard, A., Silvester, J., Chambers, W.: Guaranteeing the period of linear recurring sequences (mod 2e). IEE Proc. E Comput. Dig. Tech. 140(5), 243–245 (1993)

    MATH  Google Scholar 

  36. Eichenauer-Herrmann, J., Grothe, H., Lehn, J.: On the period length of pseudorandom vector sequences generated by matrix generators. Math. Comput. 52(185), 145–148 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  37. A statistical test suite for random and pseudorandom number generators for cryptographic applications,NIST special publication 800-22, Rev. 1-a.National Institute of Standards and Technology, Gaithersburg, Maryland, USA (2010)

  38. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. J. Lahtonen for helpful comments on some proofs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Farhang.

Additional information

This work was supported in part by Iran National Elites Foundation (INEF) and Iran National Science Foundation (INSF).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastgheib, M.A., Farhang, M. A digital pseudo-random number generator based on sawtooth chaotic map with a guaranteed enhanced period. Nonlinear Dyn 89, 2957–2966 (2017). https://doi.org/10.1007/s11071-017-3638-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3638-3

Keywords

Navigation